Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 112(5): 685-699, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-37955234

RESUMEN

Postoperative infection and subsequent device loss are serious complications in the use of titanium dental implants and plates for jawbone reconstruction. We have previously reported that NaOH-CaCl2 -thermal-ICl3 -treated titanium (NaCaThIo) has a nano-scale surface and exhibits antibacterial activity against Staphylococcus aureus. The present study examined the surface properties of mixed-acid treated and then iodine-treated titanium (MA-NaCaThIo), and evaluated oral antibacterial activity and cytotoxicity compared with the results obtained with NaCaThIo. MA-NaCaThIo formed a surface layer with a nano-scale network structure having microscale irregularities, and both the thickness of the surface layer (1.49 ± 0.16 µm) and the average surface roughness (0.35 ± 0.03 µm) were significantly higher than those of NaCaThIo. Furthermore, MA-NaCaThIo maintained high hydrophilicity with a contact angle of 7.5 ± 1.7° even after 4 weeks, as well as improved apatite formation, iodine ion release, and antibacterial activity against Prevotella intermedia compared to NaCaThIo. Cell culture test revealed that MA-NaCaThIo exhibited no cytotoxicity against MG-63 and Vero cells, while increased cell proliferation, ALP activity and mineralization of MG-63 compared to NaCaThIo. This treated titanium is expected to be useful for the development of next-generation titanium devices having both bone-bonding and antibacterial properties.


Asunto(s)
Yodo , Titanio , Animales , Chlorocebus aethiops , Titanio/farmacología , Titanio/química , Yodo/farmacología , Células Vero , Antibacterianos/farmacología , Antibacterianos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA