Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 3(2): e1600446, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28246631

RESUMEN

Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets.

2.
Environ Microbiol Rep ; 5(1): 127-34, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23757141

RESUMEN

Antibiotic resistance genes are biologically transmitted from microorganism to microorganism in particular micro-environments where dense microbial communities are often exposed to an intensive use of antibiotics, such as intestinal microflora, and the soil microflora of agricultural fields. However, recent studies have detected antibiotic-resistant bacteria and/or antibiotic resistance genes in the natural environment geographically isolated from such areas. Here we sought to examine the prevalence of antibiotic resistance genes in 54 snow and ice samples collected from the Arctic, Antarctic, Central Asia, North and South America and Africa, to evaluate the level of these genes in environments supposedly not affected by anthropogenic factors. We observed a widespread distribution of antibiotic resistance genes in samples from various glaciers in Central Asia, North and South America, Greenland and Africa. In contrast, Antarctic glaciers were virtually free from these genes. Antibiotic resistance genes, of both clinical (i.e. aac(3), blaIMP) and agricultural (i.e. strA and tetW) origin, were detected. Our results show regional geographical distribution of antibiotic resistance genes, with the most plausible modes of transmission through airborne bacteria and migrating birds.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Cubierta de Hielo/microbiología , África , Regiones Antárticas , Asia Central , Ambiente , Groenlandia , Pruebas de Sensibilidad Microbiana , América del Norte , Microbiología del Suelo , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA