Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398447

RESUMEN

Concurrent transcranial direct current stimulation (tDCS) and proton Magnetic Resonance Spectroscopy ( 1 H MRS) experiments have shown up- or downregulation of neurotransmitter concentration. However, effects have been modest applying mostly lower current doses and not all studies found significant effects. Dose of stimulation might be an important variable in eliciting a consistent response. To investigate dose effects of tDCS on neurometabolites, we placed an electrode over the left supraorbital region (with a return electrode over the right mastoid bone) and utilized an MRS voxel (3x3x3cm) that was centered over the anterior cingulate/inferior mesial prefrontal region which is in the path of the current distribution. We conducted 5 epochs of acquisition, each one with a 9:18min acquisition time, and applied tDCS in the third epoch. We observed significant dose and polarity dependent modulation of GABA and to a lesser degree of Glutamine/Glutamate (GLX) with the highest and reliable changes seen with the highest current dose, 5mA (current density 0.39 mA/cm 2 ), during and after the stimulation epoch compared with pre-stimulation baselines. The strong effect on GABA concentration (achieving a mean change of 63% from baseline, more than twice as much as reported with lower doses of stimulation) establishes tDCS-dose as an important parameter in eliciting a regional brain engagement and response. Furthermore, our experimental design in examining tDCS parameters and effects using shorter epochs of acquisitions might constitute a framework to explore the tDCS parameter space further and establish measures of regional engagement by non-invasive brain-stimulation.

2.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398497

RESUMEN

Non-invasive transcranial direct current stimulation (tDCS) can modulate activity of targeted brain regions. Whether tDCS can reliably and repeatedly modulate intrinsic connectivity of entire brain networks is unclear. We used concurrent tDCS-MRI to investigate the effect of high dose anodal tDCS on resting state connectivity within the Arcuate Fasciculus (AF) network, which spans the temporal, parietal, and frontal lobes and is connected via a structural backbone, the Arcuate Fasciculus (AF) white matter tract. Effects of high-dose tDCS (4mA) delivered via a single electrode placed over one of the AF nodes (single electrode stimulation, SE-S) was compared to the same dose split between multiple electrodes placed over AF-network nodes (multielectrode network stimulation, ME-NETS). While both SE-S and ME-NETS significantly modulated connectivity between AF network nodes (increasing connectivity during stimulation epochs), ME-NETS had a significantly larger and more reliable effect than SE-S. Moreover, comparison with a control network, the Inferior Longitudinal Fasciculus (ILF) network suggested that the effect of ME-NETS on connectivity was specific to the targeted AF-network. This finding was further supported by the results of a seed-to-voxel analysis wherein we found ME-NETS primarily modulated connectivity between AF-network nodes. Finally, an exploratory analysis looking at dynamic connectivity using sliding window correlation found strong and immediate modulation of connectivity during three stimulation epochs within the same imaging session.

3.
PLoS Comput Biol ; 19(4): e1011012, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043484

RESUMEN

Transcranial direct current stimulation (tDCS) can noninvasively modulate behavior, cognition, and physiologic brain functions depending on polarity and dose of stimulation as well as montage of electrodes. Concurrent tDCS-fMRI presents a novel way to explore the parameter space of non-invasive brain stimulation and to inform the experimenter as well as the participant if a targeted brain region or a network of spatially separate brain regions has been engaged and modulated. We compared a multi-electrode (ME) with a single electrode (SE) montage and both active conditions with a no-stimulation (NS) control condition to assess the engagement of a brain network and the ability of different electrode montages to modulate network activity. The multi-electrode montage targeted nodal regions of the right Arcuate Fasciculus Network (AFN) with anodal electrodes placed over the skull position of the posterior superior temporal/middle temporal gyrus (STG/MTG), supramarginal gyrus (SMG), posterior inferior frontal gyrus (IFG) and a return cathodal electrode over the left supraorbital region. In comparison, the single electrode montage used only one anodal electrode over a nodal brain region of the AFN, but varied the location between STG/MTG, SMG, and posterior IFG for different participants. Whole-brain rs-fMRI was obtained approximately every three seconds. The tDCS-stimulator was turned on at 3 minutes after the scanning started. A 4D rs-fMRI data set was converted to dynamic functional connectivity (DFC) matrices using a set of ROI pairs belonging to the AFN as well as other unrelated brain networks. In this study, we evaluated the performance of five algorithms to classify the DFC matrices from the three conditions (ME, SE, NS) into three different categories. The highest accuracy of 0.92 was obtained for the classification of the ME condition using the K Nearest Neighbor (KNN) algorithm. In other words, applying the classification algorithm allowed us to identify the engagement of the AFN and the ME condition was the best montage to achieve such an engagement. The top 5 ROI pairs that made a major contribution to the classification of participant's rs-fMRI data were identified using model performance parameters; ROI pairs were mainly located within the right AFN. This proof-of-concept study using a classification algorithm approach can be expanded to create a near real-time feedback system at a participant level to detect the engagement and modulation of a brain network that spans multiple brain lobes.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Imagen por Resonancia Magnética , Encéfalo/fisiología , Corteza Prefrontal/fisiología , Electrodos
4.
Sci Rep ; 12(1): 9607, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35689084

RESUMEN

Dysphagia is a serious stroke complication but lacks effective therapy. We investigated safety and preliminary efficacy of anodal transcranial direct current stimulation (atDCS) paired with swallowing exercises in improving post-stroke dysphagia from an acute unilateral hemispheric infarction (UHI). We conducted a double-blind, early phase-2 randomized controlled trial, in subjects (n = 42) with moderate-severe dysphagia [Penetration and Aspiration Scale (PAS) score ≥ 4], from an acute-subacute UHI. Subjects were randomized to Low-Dose, High-Dose atDCS or Sham stimulation for 5 consecutive days. Primary safety outcomes were incidence of seizures, neurological, motor, or swallowing function deterioration. Primary efficacy outcome was a change in PAS scores at day-5 of intervention. Main secondary outcome was dietary improvement at 1-month, assessed by Functional Oral Intake (FOIS) score. No differences in pre-defined safety outcomes or adjusted mean changes in PAS, FOIS scores, between groups, were observed. Post-hoc analysis demonstrated that 22 /24 subjects in the combined atDCS group had a clinically meaningful dietary improvement (FOIS score ≥ 5) compared to 8 /14 in Sham (p = 0.037, Fisher-exact). atDCS application in the acute-subacute stroke phase is safe but did not decrease risk of aspiration in this early phase trial. The observed dietary improvement is promising and merits further investigation.


Asunto(s)
Trastornos de Deglución , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Encéfalo , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Humanos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Estimulación Transcraneal de Corriente Directa/efectos adversos , Resultado del Tratamiento
5.
Neuroimage ; 237: 118144, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991697

RESUMEN

We used three dose levels (Sham, 2 mA, and 4 mA) and two different electrode montages (unihemispheric and bihemispheric) to examine DOSE and MONTAGE effects on regional cerebral blood flow (rCBF) as a surrogate marker of neural activity, and on a finger sequence task, as a surrogate behavioral measure drawing on brain regions targeted by transcranial direct current stimulation (tDCS). We placed the anodal electrode over the right motor region (C4) while the cathodal or return electrode was placed either over a left supraorbital region (unihemispheric montage) or over the left motor region (C3 in the bihemispheric montage). Performance changes in the finger sequence task for both hands (left hand: p = 0.0026, and right hand: p = 0.0002) showed a linear tDCS dose response but no montage effect. rCBF in the right hemispheric perirolandic area increased with dose under the anodal electrode (p = 0.027). In contrast, in the perirolandic ROI in the left hemisphere, rCBF showed a trend to increase with dose (p = 0.053) and a significant effect of montage (p = 0.00004). The bihemispheric montage showed additional rCBF increases in frontomesial regions in the 4mA condition but not in the 2 mA condition. Furthermore, we found strong correlations between simulated current density in the left and right perirolandic region and improvements in the finger sequence task performance (FSP) for the contralateral hand. Our data support not only a strong direct tDCS dose effect for rCBF and FSP as surrogate measures of targeted brain regions but also indirect effects on rCBF in functionally connected regions (e.g., frontomesial regions), particularly in the higher dose condition and on FSP of the ipsilateral hand (to the anodal electrode). At a higher dose and irrespective of polarity, a wider network of sensorimotor regions is positively affected by tDCS.


Asunto(s)
Circulación Cerebrovascular/fisiología , Actividad Motora/fisiología , Red Nerviosa/fisiología , Corteza Sensoriomotora/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Femenino , Dedos , Humanos , Imagen por Resonancia Magnética , Masculino , Marcadores de Spin , Estimulación Transcraneal de Corriente Directa/métodos
6.
Neuroreport ; 32(8): 702-710, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33852539

RESUMEN

Previous studies have shown that transcranial direct current stimulation (tDCS) can affect performance by decreasing regional excitability in a brain region that contributes to the task of interest. To our knowledge, no research to date has found both enhancing and diminishing effects on performance, depending upon which polarity of the current is applied. The supramarginal gyrus (SMG) is an ideal brain region for testing tDCS effects because it is easy to identify using the 10-20 electroencephalography coordinate system, and results of neuroimaging studies have implicated the left SMG in short-term memory for phonological and nonphonological sounds. In the present study, we found that applying tDCS to the left SMG affected pitch memory in a manner that depended upon the polarity of stimulation: cathodal tDCS had a negative impact on performance whereas anodal tDCS had a positive impact. These effects were significantly different from sham stimulation, which did not influence performance; they were also specific to the left hemisphere - no effect was found when applying cathodal stimulation to the right SMG - and were unique to pitch memory as opposed to memory for visual shapes. Our results provide further evidence that the left SMG is a nodal point for short-term auditory storage and demonstrate the potential of tDCS to influence cognitive performance and to causally examine hypotheses derived from neuroimaging studies.


Asunto(s)
Percepción Auditiva/fisiología , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Adulto , Femenino , Humanos , Masculino , Estimulación Transcraneal de Corriente Directa , Adulto Joven
7.
Opt Express ; 27(5): 6068-6082, 2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30876200

RESUMEN

Breaking the diffraction limit in imaging microscopes with far-field imaging options has always been the thrust challenge for optical engineers and biologists over the years. Although structured illumination microscopy and Bessel beam assisted imaging has shown the capability of imaging with sub-diffraction resolutions, they rely on the use of objective lenses with large numerical apertures (NA). Hence, they fail to sustain resolutions at larger working distances. In this context, we demonstrate a method for nanoscale resolution imaging at longer working distances, named as Structured Illumination Bessel Microscopy (SIBM). The proposed method is envisaged for both biological and engineering applications that necessitate high imaging resolutions at large working distances.

8.
Sci Rep ; 7: 45654, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28368033

RESUMEN

An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 µm and an axial resolution of 5.5 µm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.

9.
Biomed Opt Express ; 7(12): 5308-5324, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28018744

RESUMEN

We report a simple real time optical imaging concept using an axicon lens to image the object kept behind opaque obstacles in free space. The proposed concept underlines the importance and advantages of using an axicon lens compared to a conventional lens to image behind the obstacle. The potential of this imaging concept is demonstrated by imaging the insertion of surgical needle in biological specimen in real time, without blocking the field of view. It is envisaged that this proposed concepts and methodology can make a telling impact in a wide variety of areas especially for diagnostics, therapeutics and microscopy applications.

10.
Sci Rep ; 6: 30844, 2016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27471000

RESUMEN

Direct visualization and assessment of the iridocorneal angle (ICA) region with high resolution is important for the clinical evaluation of glaucoma. However, the current clinical imaging systems for ICA do not provide sufficient structural details due to their poor resolution. The key challenges in achieving high quality ICA imaging are its location in the anterior region of the eye and the occurrence of total internal reflection due to refractive index difference between cornea and air. Here, we report an indirect axicon assisted gonioscopy imaging probe with white light illumination. The illustrated results with this probe shows significantly improved visualization of structures in the ICA including TM region, compared to the current available tools. It could reveal critical details of ICA and expected to aid management by providing information that is complementary to angle photography and gonioscopy.


Asunto(s)
Córnea/patología , Gonioscopía/métodos , Animales , Glaucoma/diagnóstico , Gonioscopía/instrumentación , Pigmentación , Porcinos , Malla Trabecular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA