Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 56(25): 3677-3680, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32118239

RESUMEN

A liquid/liquid interfacial method is used to synthesize a conjugated porous polymer nanofilm with a large domain size. Copper-catalyzed azide-alkyne cycloaddition between a triangular terminal alkyne and azide monomers at a water/dichloromethane interface generates a 1,2,3-triazole-linked polymer nanofilm featuring a large aspect ratio and robustness against heat and pH.

2.
ACS Appl Mater Interfaces ; 11(3): 2730-2733, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-29508605

RESUMEN

Graphdiyne (GDY) comprises an important class in functional covalent organic nanosheets based on carbon-carbon bond formation, and recent focus has collected in the expansion of its variations. Here we report on the synthesis of a GDY analogue, TP-GDY, which has triphenylene as the aromatic core. Our liquid/liquid interfacial synthesis for GDY ( J. Am. Chem. Soc. 2017, 139, 3145) was modified for hexaethynyltriphenylene monomer to afford a TP-GDY film with a free-standing morphology, a smooth texture, a domain size of >1 mm, and a thickness of 220 nm. Resultant TP-GDY is characterized by series of microscopies, spectroscopies, and thermogravimetric and gas adsorption analyses.

3.
Chemistry ; 23(35): 8443-8449, 2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28419580

RESUMEN

A liquid/liquid interfacial synthesis is employed, for the first time, to synthesize a covalent two-dimensional polymer nanosheet. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) between a three-way terminal alkyne and azide at a water/dichloromethane interface generates a 1,2,3-triazole-linked nanosheet. The resultant nanosheet, with a flat and smooth texture, has a maximum domain size of 20 µm and minimum thickness of 5.3 nm. The starting monomers in the organic phase and the copper catalyst in the aqueous phase can only meet at the liquid/liquid interface as a two-dimensional reaction space; this allows them to form the two-dimensional polymer. The robust triazole linkage generated by irreversible covalent-bond formation allows the nanosheet to resist hydrolysis under both acidic and alkaline conditions, and to endure pyrolysis up to more than 300 °C. The coordination ability of the triazolyl group enables the nanosheet to act as a reservoir for metal ions, with an affinity order of Pd2+ >Au3+ >Cu2+ .

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA