Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anim Sci J ; 93(1): e13802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36562279

RESUMEN

Several studies have suggested a strong interaction between the circadian clock and lipid metabolism in mammals. The circadian clock is driven by endogenous cyclic gene expression patterns, commonly referred to as clock genes, and transcription-translation negative feedback loops. Clock genes regulate the transcription of some lipid metabolism-related genes; however, the relationship between the circadian clock and triglyceride (TG) accumulation at the cellular level remains unclear. Here, we evaluated rhythms of intracellular TG accumulation levels as well as the expression of clock genes and lipid metabolism-related genes for 54 h in mouse and bovine adipose-derived cell cultures. To the best of our knowledge, this study represents the first report demonstrating that TG accumulation exhibits diurnal variations, with the pattern differing among cell types. Furthermore, we found that expression of clock genes and corresponding lipid metabolism-related genes exhibited circadian rhythms. Our results suggest that the cellular clock regulates lipid metabolism-related genes to relate circadian rhythms of TG accumulation in each cell type. We anticipate that the amount of fat stored depends on the timing of the supply of glucose-the precursor of fat. The findings of this study will contribute to the advancement of chrono-nutrition.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Bovinos , Animales , Ratones , Triglicéridos , Ritmo Circadiano/genética , Relojes Circadianos/genética , Línea Celular , Adipocitos , Mamíferos
2.
Sleep Biol Rhythms ; 20(2): 255-266, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38469255

RESUMEN

Introduction: In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates the circadian rhythm and controls locomotor activity rhythms. In addition to SCN cells, the peripheral tissues and embryonic fibroblasts also have clock genes, such as Per1/2 and Bmal1, which generate the transcriptional-translational feedback loop to produce an approximately 24-h cycle. Aging adversely affects the circadian clock system and locomotor functions. Oak extract has been reported to improve age-related physiological changes. However, no study has examined the effect of oak extract on the circadian clock system. Methods: We examined the effects of oak extract and its metabolites (urolithin A [ULT] and ellagic acid [EA]) on clock gene expression rhythms in mouse embryonic fibroblasts (MEFs) and SCN. Furthermore, locomotor activity rhythm was assessed in young and aged mice. Results: Chronic treatment with EA and ULT delayed the phase of PER2::LUC rhythms in SCN explants, and ULT prolonged the period of PER2::LUC rhythms in MEFs in a dose-dependent manner and increased the amplitude of PER2::LUC rhythms in MEFs, though only at low concentrations. Acute treatment with ULT affected the phase of PER2::LUC rhythms in MEFs depending on the concentration and timing of the treatment. In addition, oak extract prolonged the activity time of behavioral rhythms in old mice and tended to increase daily wheel-running revolutions in both young and old mice. Conclusions: These results suggest that oak extract is a novel modulator of the circadian clock in vitro and in vivo. Supplementary Information: The online version contains supplementary material available at 10.1007/s41105-021-00365-2.

3.
PLoS One ; 15(5): e0233386, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32437460

RESUMEN

Salt is an essential nutrient; however, excessive salt intake is a prominent public health concern worldwide. Various physiological functions are associated with circadian rhythms, and disruption of circadian rhythms is a prominent risk factor for cardiovascular diseases, cancer, and immune disease. Certain nutrients are vital regulators of peripheral circadian clocks. However, the role of a high-fat and high-salt (HFS) diet in the regulation of circadian gene expression is unclear. This study aimed to investigate the effect of an HFS diet on rhythms of locomotor activity, caecum glucocorticoid secretion, and clock gene expression in mice. Mice administered an HFS diet displayed reduced locomotor activity under normal light/dark and constant dark conditions in comparison with those administered a normal diet. The diurnal rhythm of caecum glucocorticoid secretion and the expression levels of glucocorticoid-related genes and clock genes in the adrenal gland were disrupted with an HFS diet. These results suggest that an HFS diet alters locomotor activity, disrupts circadian rhythms of glucocorticoid secretion, and downregulates peripheral adrenal gland circadian clock genes.


Asunto(s)
Ritmo Circadiano/fisiología , Dieta Alta en Grasa , Glucocorticoides/biosíntesis , Actividad Motora/fisiología , Cloruro de Sodio Dietético , Glándulas Suprarrenales/metabolismo , Animales , Relojes Circadianos/fisiología , Masculino , Ratones , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA