Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 1 de 1
1.
Clin Neurol Neurosurg ; 211: 107048, 2021 12.
Article En | MEDLINE | ID: mdl-34826755

Diffusion Tensor Imaging (DTI) enabled the investigation of brain White Matter (WM), both qualitatively to study the macrostructure, and quantitatively to study the microstructure. The quantitative analyses are mostly performed at the whole-tract level, i.e., providing one measure of interest per tract; however, along-tract approaches may provide finer details of the quality of the WM tracts. In this study, using the DWI data collected from 40 young and 40 old individuals, we compared the DTI measures of FA, MD, AD, and RD, estimated by both whole-tract and along-tract approaches in 18 WM bundles, between the two groups. The results of the whole-tract quantitative analysis showed a statistically significant (p-FWER < 0.05) difference between the old and young groups in 6 tracts for FA, 8 tracts for MD, 1 tract for AD, and 7 tracts for RD. On the contrary, the along-tract approach showed differences between the two groups in 10 tracts for FA, 14 tracts for MD, 8 tracts for AD, and 11 tracts for RD. All the differences between the along-tract measures of the two groups had a large effect size (Cohen'd > 0.80). This study showed that the along-tract approach for the analysis of brain WM reveals changes in some WM tracts which had not shown any changes in the whole-tract approach, and therefore this finding emphasizes the utilization of the along-tract approach along with the whole-tract method for a more accurate study of the brain WM.


Aging/physiology , Brain/diagnostic imaging , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Adult , Age Factors , Aged , Anisotropy , Brain/physiopathology , Female , Humans , Male , Middle Aged , Pyramidal Tracts/diagnostic imaging , White Matter/physiopathology , Young Adult
...