Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem Lett ; 15(2): 540-548, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38197909

RESUMEN

Optical data storage, information encryption, and security labeling technologies require materials that exhibit local, pronounced, and diverse modifications of their structure-dependent optical properties under external excitation. Herein, we propose and develop a novel platform relying on lead halide Ruddlesden-Popper phases that undergo a light-induced transition toward bulk perovskite and employ this phenomenon for the direct optical writing of multicolor patterns. This transition causes the weakening of quantum confinement and hence a reduction in the band gap. To extend the color gamut of photoluminescence, we use mixed-halide compositions that exhibit photoinduced halide segregation. The emission of the films can be tuned across the range of 450-600 nm. Laser irradiation provides high-resolution direct writing, whereas continuous-wave ultraviolet exposure is suitable for recording on larger scales. The luminescent images created on such films can be erased during the visualization process. This makes the proposed writing/erasing platform suitable for the manufacturing of optical data storage devices and light-erasable security labels.

2.
Inorg Chem ; 62(26): 10369-10381, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37348001

RESUMEN

Doping of nano- and microparticles of oxides with rare earth elements (REEs) is used to fine-tune their structural, optical, and electrochemical properties. On the way to establish the structure-property relationship, we dope tantalum oxide (Ta2O5) particles with REEs to study their effect on the oxide structure and luminescence. Ta2O5 is highly perspective in medicine, catalysis, and optics, but its crystal structure is insufficiently studied. Two synthesis approaches (sol-gel and solvothermal) were used to obtain powders with different textures. Experimental and theoretical studies of amorphous and crystallized tantalum oxide NPs by means of X-ray powder diffraction, Rietveld analysis, EXAFS/XANES spectroscopy, and density functional theory calculations were performed. All samples (doped and undoped) crystallized in orthorhombic phase with no admixtures. It was demonstrated that Ta2O5 is a promising wide-spectrum luminescent material: by combining REEs, both Stokes and anti-Stokes luminescence in the visible region were obtained. By means of optical absorption spectroscopy, it was shown that the prepared samples could be classified as wide band gap semiconductors.

3.
Small ; 19(28): e2301660, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37178371

RESUMEN

Emerging technologies for integrated optical circuits demand novel approaches and materials. This includes a search for nanoscale waveguides that should satisfy criteria of high optical density, small cross-section, technological feasibility and structural perfection. All these criteria are met with self-assembled gallium phosphide (GaP) epitaxial nanowires. In this work, the effects of the nanowire geometry on their waveguiding properties are studied both experimentally and numerically. Cut-off wavelength dependence on the nanowire diameter is analyzed to demonstrate the pathways for fabrication of low-loss and subwavelength cross-section waveguides for visible and near-infrared (IR) ranges. Probing the waveguides with a supercontinuum laser unveils the filtering properties of the nanowires due to their resonant action. The nanowires exhibit perfect elasticity allowing fabrication of curved waveguides. It is demonstrated that for the nanowire diameters exceeding the cut-off value, the bending does not sufficiently reduce the field confinement promoting applicability of the approach for the development of nanoscale waveguides with a preassigned geometry. Optical X-coupler made of two GaP nanowires allowing for spectral separation of the signal is fabricated. The results of this work open new ways for the utilization of GaP nanowires as elements of advanced photonic logic circuits and nanoscale interferometers.

4.
ACS Appl Mater Interfaces ; 14(27): 31000-31009, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35758694

RESUMEN

Inorganic-organic hybrid luminescent materials have received great attention for their potential applications in a wide range of clean/renewable energy-related areas, including photovoltaics and solid-state lighting. Herein, we present a unique and general "Mn + Cu" approach by blending two earth-abundant luminogenic metals, manganese and copper, within a single ionic structure to construct a remarkable family of low-cost and multifunctional hybrid materials featuring dual emission, as well as triboluminescence and second-harmonic generation response. The novel hybrid materials are made of diphosphine dioxide-chelated [Mn(O∧O)3]2+ cations and various anionic [CuxIy](y-x)- clusters, ensuring manifestation of dual phosphorescence streamed from octahedral Mn2+ ions (605-648 nm) and iodocuprate anions (480-728 nm). Noteworthily, the relative ratio of the emission bands, and hence a resulting emission chromaticity, can be tuned in a wide range through modification of cluster [CuxIy](y-x)- modules. The structural diversity, enhanced robustness, and up to 100% luminescence quantum yield make the designed materials promising phosphors for lighting and sensing applications.

5.
Adv Mater ; 33(25): e2008484, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33984163

RESUMEN

Mesoscopic photonic systems with tailored optical responses have great potential to open new frontiers in implantable biomedical devices. However, biocompatibility is typically a problem, as engineering of optical properties often calls for using toxic compounds and chemicals, unsuitable for in vivo applications. Here, a unique approach to biofriendly delivery of optical resonances is demonstrated. It is shown that the controllable infusion of gold nanoseeds into polycrystalline sub-micrometer vaterite spherulites gives rise to a variety of electric and magnetic Mie resonances, producing a tuneable mesoscopic optical metamaterial. The 3D reconstruction of the spherulites demonstrates the capability of controllable gold loading with volumetric filling factors exceeding 28%. Owing to the biocompatibility of the constitutive elements, "golden vaterite" paves the way to introduce designer-made Mie resonances to cutting-edge biophotonic applications. This concept is exemplified by showing efficient laser heating of gold-filled vaterite spherulites at red and near-infrared wavelengths, highly desirable in photothermal therapy, and photoacoustic tomography.


Asunto(s)
Carbonato de Calcio , Oro , Luz
6.
Adv Mater ; 33(16): e2005886, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33705580

RESUMEN

The never-ending struggle against counterfeit demands the constant development of security labels and their fabrication methods. This study demonstrates a novel type of security label based on downconversion photoluminescence from erbium-doped silicon. For fabrication of these labels, a femtosecond laser is applied to selectively irradiate a double-layered Er/Si thin film, which is accomplished by Er incorporation into a silicon matrix and silicon-layer crystallization. The study of laser-induced heating demonstrates that it creates optically active erbium centers in silicon, providing stable and enhanced photoluminescence at 1530 nm. Such a technique is utilized to create two types of anti-counterfeiting labels. The first type is realized by the single-step direct laser writing of luminescent areas and detected by optical microscopy as holes in the film forming the desired image. The second type, with a higher degree of security, is realized by adding other fabrication steps, including the chemical etching of the Er layer and laser writing of additional non-luminescent holes over an initially recorded image. During laser excitation at 525 nm of luminescent holes of the labels, a photoluminescent picture repeating desired data can be seen. The proposed labels are easily scalable and perspective for labeling of goods, securities, and luxury items.

7.
Nano Lett ; 19(10): 7062-7071, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31496253

RESUMEN

Being the polymorphs of calcium carbonate (CaCO3), vaterite and calcite have attracted a great deal of attention as promising biomaterials for drug delivery and tissue engineering applications. Furthermore, they are important biogenic minerals, enabling living organisms to reach specific functions. In nature, vaterite and calcite monocrystals typically form self-assembled polycrystal micro- and nanoparticles, also referred to as spherulites. Here, we demonstrate that alpine plants belonging to the Saxifraga genus can tailor light scattering channels and utilize multipole interference effect to improve light collection efficiency via producing CaCO3 polycrystal nanoparticles on the margins of their leaves. To provide a clear physical background behind this concept, we study optical properties of artificially synthesized vaterite nanospherulites and reveal the phenomenon of directional light scattering. Dark-field spectroscopy measurements are supported by a comprehensive numerical analysis, accounting for the complex microstructure of particles. We demonstrate the appearance of generalized Kerker condition, where several higher order multipoles interfere constructively in the forward direction, governing the interaction phenomenon. As a result, highly directive forward light scattering from vaterite nanospherulites is observed in the entire visible range. Furthermore, ex vivo studies of microstructure and optical properties of leaves for the alpine plants Saxifraga "Southside Seedling" and Saxifraga Paniculata Ria are performed and underline the importance of the Kerker effect for these living organisms. Our results pave the way for a bioinspired strategy of efficient light collection by self-assembled polycrystal CaCO3 nanoparticles via tailoring light propagation directly to the photosynthetic tissue with minimal losses to undesired scattering channels.


Asunto(s)
Carbonato de Calcio/metabolismo , Nanopartículas/metabolismo , Hojas de la Planta/metabolismo , Saxifragaceae/metabolismo , Cristalización , Luz , Procesos Fotoquímicos
8.
Nanoscale ; 10(45): 21031-21040, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30427038

RESUMEN

The optical properties of nanoparticles have attracted continuous attention owing to their high fundamental and applied importance across many disciplines. A recently emerged field of all-dielectric nanophotonics employs optically induced electric and magnetic Mie resonances in dielectric nanoparticles with a high refractive index. This property allows obtaining additional valuable degrees of freedom to control the optical responses of nanophotonic structures. Here we propose a conceptually distinct approach towards reaching optical resonances in dielectric nanoparticles. We show that, lacking conventional Mie resonances, low-index nanoparticles can exhibit a novel anisotropy-induced family of non-Mie eigenmodes. Specifically, we investigate light interactions with calcite and vaterite nanospheres and compare them with the Mie scattering by a fused silica sphere. Having close permittivities and the same dimensions, these particles exhibit significantly different scattering behavior owing to their internal structure. While a fused silica sphere does not demonstrate any spectral features, the uniaxial structure of the permittivity tensor for calcite and the non-diagonal permittivity tensor for vaterite result in a set of distinguishable peaks in scattering spectra. Multipole decomposition and eigenmode analysis reveal that these peaks are associated with a new family of electric and magnetic resonances. We identify magnetic dipole modes of ordinary, extraordinary and hybrid polarization as well as complex electric dipole resonances, featuring a significant toroidal electric dipole moment. As both vaterite and calcite are biominerals, naturally synthesized and exploited by a variety of living organisms, our results provide an indispensable toolbox for understanding and elucidating the mechanisms behind the optical functionalities of true biological systems.

9.
Nano Lett ; 18(8): 5024-5029, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29949377

RESUMEN

The ability to manipulate small objects with focused laser beams opens a broad spectrum of opportunities in fundamental and applied studies, for which precise control over mechanical path and stability is required. Although conventional optical tweezers are based on refractive optics, the development of compact trapping devices that could be integrated within fluid cells is in high demand. Here, a plasmonic polarization-sensitive metasurface-based lens, embedded within a fluid, is demonstrated to provide several stable trapping centers along the optical axis. The position of a particle is controlled with the polarization of the incident light, interacting with plasmonic nanoscale patch antennas, organized within overlapping Fresnel zones of the lens. While standard diffractive optical elements face challenges in trapping objects in the axial direction outside the depth of focus, bifocal Fresnel meta-lens demonstrates the capability to manipulate a bead along a 4 µm line. An additional fluorescent module, incorporated within the optical trapping setup, was implemented and enabled the accurate mapping of optical potentials via a particle-tracking algorithm. Auxiliary micro- and nanostructures, integrated within fluidic devices, provide numerous opportunities to achieve flexible optomechanical manipulation, including transport, trapping, and sorting, which are in high demand for lab-on-a-chip applications and many others.

10.
Adv Mater ; 28(16): 3087-93, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26901635

RESUMEN

Ordered hybrid nanostructures for nanophotonics applications are fabricated by a novel approach via femtosecond laser melting of asymmetric metal-dielectric (Au/Si) nanoparticles created by lithographical methods. The approach allows selective reshaping of the metal components of the hybrid nanoparticles without affecting the dielectric ones and is applied for tuning of the scattering properties of the hybrid nanostructures in the visible range.

11.
Nat Commun ; 4: 2949, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24335832

RESUMEN

Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA