Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Cell Rep ; 43(1): 113517, 2024 01 23.
Article En | MEDLINE | ID: mdl-38142397

Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.


DNA Transposable Elements , High-Throughput Nucleotide Sequencing , DNA Transposable Elements/genetics , High-Throughput Nucleotide Sequencing/methods , Cloning, Molecular , Gene Library , Bacteria/genetics , Mutagenesis, Insertional/genetics
2.
Cell Rep ; 43(1): 113519, 2024 01 23.
Article En | MEDLINE | ID: mdl-38142398

The critical role of the intestinal microbiota in human health and disease is well recognized. Nevertheless, there are still large gaps in our understanding of the functions and mechanisms encoded in the genomes of most members of the gut microbiota. Genome-scale libraries of transposon mutants are a powerful tool to help us address this gap. Recent advances in barcoded transposon mutagenesis have dramatically lowered the cost of mutant fitness determination in hundreds of in vitro and in vivo experimental conditions. In an accompanying review, we discuss recent advances and caveats for the construction of pooled and arrayed barcoded transposon mutant libraries in human gut commensals. In this review, we discuss how these libraries can be used across a wide range of applications, the technical aspects involved, and expectations for such screens.


DNA Transposable Elements , Humans , Mutagenesis, Insertional/genetics , DNA Transposable Elements/genetics , Gene Library
3.
bioRxiv ; 2023 Aug 29.
Article En | MEDLINE | ID: mdl-37693407

Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.

4.
BMC Biol ; 20(1): 285, 2022 12 17.
Article En | MEDLINE | ID: mdl-36527020

BACKGROUND: Ordered transposon-insertion collections, in which specific transposon-insertion mutants are stored as monocultures in a genome-scale collection, represent a promising tool for genetic dissection of human gut microbiota members. However, publicly available collections are scarce and the construction methodology remains in early stages of development. RESULTS: Here, we describe the assembly of a genome-scale ordered collection of transposon-insertion mutants in the model gut anaerobe Bacteroides thetaiotaomicron VPI-5482 that we created as a resource for the research community. We used flow cytometry to sort single cells from a pooled library, located mutants within this initial progenitor collection by applying a pooling strategy with barcode sequencing, and re-arrayed specific mutants to create a condensed collection with single-insertion strains covering >2500 genes. To demonstrate the potential of the condensed collection for phenotypic screening, we analyzed growth dynamics and cell morphology. We identified both growth defects and altered cell shape in mutants disrupting sphingolipid synthesis and thiamine scavenging. Finally, we analyzed the process of assembling the B. theta condensed collection to identify inefficiencies that limited coverage. We demonstrate as part of this analysis that the process of assembling an ordered collection can be accurately modeled using barcode sequencing data. CONCLUSION: We expect that utilization of this ordered collection will accelerate research into B. theta physiology and that lessons learned while assembling the collection will inform future efforts to assemble ordered mutant collections for an increasing number of gut microbiota members.


Bacteroides thetaiotaomicron , Humans , Mutagenesis, Insertional , Bacteroides thetaiotaomicron/genetics , DNA Transposable Elements , Gene Library , Genome, Bacterial
5.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Article En | MEDLINE | ID: mdl-36070752

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli , Feces , Gastrointestinal Microbiome/genetics , Germ-Free Life , Humans , Mice
6.
PLoS Biol ; 20(9): e3001727, 2022 09.
Article En | MEDLINE | ID: mdl-36067229

Conventional cuvette-based and microfluidics-based electroporation approaches for bacterial gene delivery have distinct advantages, but they are typically limited to relatively small sample volumes, reducing their utility for applications requiring high throughput such as the generation of mutant libraries. Here, we present a scalable, large-scale bacterial gene delivery approach enabled by a disposable, user-friendly microfluidic electroporation device requiring minimal device fabrication and straightforward operation. We demonstrate that the proposed device can outperform conventional cuvettes in a range of situations, including across Escherichia coli strains with a range of electroporation efficiencies, and we use its large-volume bacterial electroporation capability to generate a library of transposon mutants in the anaerobic gut commensal Bifidobacterium longum.


Gene Transfer Techniques , Genes, Bacterial , Microfluidics , Bifidobacterium longum/genetics , Electroporation/methods , Escherichia coli/genetics , Gene Transfer Techniques/instrumentation , Microfluidics/methods , Transformation, Bacterial/genetics
7.
Nat Protoc ; 16(6): 3049-3071, 2021 06.
Article En | MEDLINE | ID: mdl-34021295

Commensal bacteria from the human intestinal microbiota play important roles in health and disease. Research into the mechanisms by which these bacteria exert their effects is hampered by the complexity of the microbiota, the strict growth requirements of the individual species and a lack of genetic tools and resources. The assembly of ordered transposon insertion libraries, in which nearly all nonessential genes have been disrupted and the strains stored as independent monocultures, would be a transformative resource for research into many microbiota members. However, assembly of these libraries must be fast and inexpensive in order to empower investigation of the large number of species that typically compose gut communities. The methods used to generate ordered libraries must also be adapted to the anaerobic growth requirements of most intestinal bacteria. We have developed a protocol to assemble ordered libraries of transposon insertion mutants that is fast, cheap and effective for even strict anaerobes. The protocol differs from currently available methods by making use of cell sorting to order the library and barcoded transposons to facilitate the localization of ordered mutations in the library. By tracking transposon insertions using barcode sequencing, our approach increases the accuracy and reduces the time and effort required to locate mutants in the library. Ordered libraries can be sorted and characterized over the course of 2 weeks using this approach. We expect this protocol will lower the barrier to generating comprehensive, ordered mutant libraries for many species in the human microbiota, allowing for new investigations into genotype-phenotype relationships within this important microbial ecosystem.


Bacteria, Anaerobic/genetics , DNA Transposable Elements , Gene Library , Genetic Techniques , Software , DNA Barcoding, Taxonomic , Gastrointestinal Microbiome
8.
Mol Cell ; 81(10): 2201-2215.e9, 2021 05 20.
Article En | MEDLINE | ID: mdl-34019789

The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.


DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , Mutation/genetics , Amdinocillin/pharmacology , Bacterial Proteins/metabolism , Cell Death/drug effects , Chromosomes, Bacterial/genetics , Cytoprotection/drug effects , Cytoskeletal Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial/drug effects , Mutagenesis, Insertional/genetics , Peptides/metabolism , Phenotype , Structure-Activity Relationship , Transcription, Genetic , Uridine Diphosphate Glucose/metabolism
9.
Cell Rep ; 34(9): 108789, 2021 03 02.
Article En | MEDLINE | ID: mdl-33657378

Harnessing the microbiota for beneficial outcomes is limited by our poor understanding of the constituent bacteria, as the functions of most of their genes are unknown. Here, we measure the growth of a barcoded transposon mutant library of the gut commensal Bacteroides thetaiotaomicron on 48 carbon sources, in the presence of 56 stress-inducing compounds, and during mono-colonization of gnotobiotic mice. We identify 516 genes with a specific phenotype under only one or a few conditions, enabling informed predictions of gene function. For example, we identify a glycoside hydrolase important for growth on type I rhamnogalacturonan, a DUF4861 protein for glycosaminoglycan utilization, a 3-keto-glucoside hydrolase for disaccharide utilization, and a tripartite multidrug resistance system specifically for bile salt tolerance. Furthermore, we show that B. thetaiotaomicron uses alternative enzymes for synthesizing nitrogen-containing metabolic precursors based on ammonium availability and that these enzymes are used differentially in vivo in a diet-dependent manner.


Bacteroides thetaiotaomicron/genetics , Diet , Energy Metabolism/genetics , Gastrointestinal Microbiome/genetics , Intestines/microbiology , Adaptation, Physiological , Ammonium Compounds/metabolism , Animals , Anti-Bacterial Agents/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroides thetaiotaomicron/drug effects , Bacteroides thetaiotaomicron/enzymology , Bacteroides thetaiotaomicron/growth & development , Bile Acids and Salts/metabolism , Databases, Genetic , Disaccharides/metabolism , Drug Resistance, Bacterial/genetics , Gastrointestinal Microbiome/drug effects , Gene Expression Regulation, Bacterial , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Humans , Male , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mice, Inbred C57BL , Mutation , Substrate Specificity , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism
10.
PLoS Biol ; 17(10): e3000268, 2019 10.
Article En | MEDLINE | ID: mdl-31622337

Imaging dense and diverse microbial communities has broad applications in basic microbiology and medicine, but remains a grand challenge due to the fact that many species adopt similar morphologies. While prior studies have relied on techniques involving spectral labeling, we have developed an expansion microscopy method (µExM) in which bacterial cells are physically expanded prior to imaging. We find that expansion patterns depend on the structural and mechanical properties of the cell wall, which vary across species and conditions. We use this phenomenon as a quantitative and sensitive phenotypic imaging contrast orthogonal to spectral separation to resolve bacterial cells of different species or in distinct physiological states. Focusing on host-microbe interactions that are difficult to quantify through fluorescence alone, we demonstrate the ability of µExM to distinguish species through an in vitro defined community of human gut commensals and in vivo imaging of a model gut microbiota, and to sensitively detect cell-envelope damage caused by antibiotics or previously unrecognized cell-to-cell phenotypic heterogeneity among pathogenic bacteria as they infect macrophages.


Acetobacter/ultrastructure , Escherichia coli/ultrastructure , Lactobacillus plantarum/ultrastructure , Microscopy/methods , Muramidase/pharmacology , Acetobacter/drug effects , Acidaminococcus/drug effects , Acidaminococcus/ultrastructure , Animals , Anti-Bacterial Agents/pharmacology , Cell Wall/chemistry , Cell Wall/drug effects , Cell Wall/ultrastructure , Drosophila melanogaster/microbiology , Escherichia coli/drug effects , Gastrointestinal Microbiome/physiology , Humans , Hydrolysis , Lactobacillus plantarum/drug effects , Mice , Microscopy/instrumentation , Muramidase/chemistry , Platyhelminths/microbiology , RAW 264.7 Cells , Stress, Mechanical , Symbiosis/physiology , Vancomycin/pharmacology
11.
Mol Cell ; 70(5): 765-767, 2018 06 07.
Article En | MEDLINE | ID: mdl-29883604

The gut microbiota plays a central role in human health. Studies by Tramontano et al. (2018) and Maier et al. (2018) improve our understanding of the metabolism and pharmaceutical impact of human gut bacteria through high-throughput screening of growth in the presence of different nutrients and drugs, respectively.


Gastrointestinal Microbiome , Microbiota , Bacteria , Humans
12.
J Biol Chem ; 292(49): 20086-20099, 2017 12 08.
Article En | MEDLINE | ID: mdl-29042439

Long-chain fatty acids (LCFAs) are used as a rich source of metabolic energy by several bacteria including important pathogens. Because LCFAs also induce oxidative stress, which may be detrimental to bacterial growth, it is imperative to understand the strategies employed by bacteria to counteract such stresses. Here, we performed a genetic screen in Escherichia coli on the LCFA, oleate, and compared our results with published genome-wide screens of multiple non-fermentable carbon sources. This large-scale analysis revealed that among components of the aerobic electron transport chain (ETC), only genes involved in the biosynthesis of ubiquinone, an electron carrier in the ETC, are highly required for growth in LCFAs when compared with other carbon sources. Using genetic and biochemical approaches, we show that this increased requirement of ubiquinone is to mitigate elevated levels of reactive oxygen species generated by LCFA degradation. Intriguingly, we find that unlike other ETC components whose requirement for growth is inversely correlated with the energy yield of non-fermentable carbon sources, the requirement of ubiquinone correlates with oxidative stress. Our results therefore suggest that a mechanism in addition to the known electron carrier function of ubiquinone is required to explain its antioxidant role in LCFA metabolism. Importantly, among the various oxidative stress combat players in E. coli, ubiquinone acts as the cell's first line of defense against LCFA-induced oxidative stress. Taken together, our results emphasize that ubiquinone is a key antioxidant during LCFA metabolism and therefore provides a rationale for investigating its role in LCFA-utilizing pathogenic bacteria.


Escherichia coli/metabolism , Fatty Acids/metabolism , Oxidative Stress , Ubiquinone/physiology , Antioxidants , Escherichia coli/genetics , Genome, Bacterial , Oleic Acid/metabolism , Reactive Oxygen Species/metabolism , Ubiquinone/metabolism
14.
Proc Natl Acad Sci U S A ; 114(10): 2717-2722, 2017 03 07.
Article En | MEDLINE | ID: mdl-28209778

Natural products harbor unique and complex structures that provide valuable antibiotic scaffolds. With an increase in antibiotic resistance, natural products once again hold promise for new antimicrobial therapies, especially those with unique scaffolds that have been overlooked due to a lack of understanding of how they function. Dithiolopyrrolones (DTPs) are an underexplored class of disulfide-containing natural products, which exhibit potent antimicrobial activities against multidrug-resistant pathogens. DTPs were thought to target RNA polymerase, but conflicting observations leave the mechanisms elusive. Using a chemical genomics screen in Escherichia coli, we uncover a mode of action for DTPs-the disruption of metal homeostasis. We show that holomycin, a prototypical DTP, is reductively activated, and reduced holomycin chelates zinc with high affinity. Examination of reduced holomycin against zinc-dependent metalloenzymes revealed that it inhibits E. coli class II fructose bisphosphate aldolase, but not RNA polymerase. Reduced holomycin also strongly inhibits metallo-ß-lactamases in vitro, major contributors to clinical carbapenem resistance, by removing active site zinc. These results indicate that holomycin is an intracellular metal-chelating antibiotic that inhibits a subset of metalloenzymes and that RNA polymerase is unlikely to be the primary target. Our work establishes a link between the chemical structures of DTPs and their antimicrobial action; the ene-dithiol group of DTPs enables high-affinity metal binding as a central mechanism to inhibit metabolic processes. Our study also validates the use of chemical genomics in characterizing modes of actions of antibiotics and emphasizes the potential of metal-chelating natural products in antimicrobial therapy.


Escherichia coli/drug effects , Lactams/pharmacology , Pyrroles/chemistry , Toluene/analogs & derivatives , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Biological Products/chemistry , Biological Products/therapeutic use , Catalytic Domain/drug effects , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/genetics , Disulfides/chemistry , Disulfides/therapeutic use , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Genomics , Homeostasis/drug effects , Humans , Lactams/chemistry , Metalloproteins/antagonists & inhibitors , Metalloproteins/genetics , Metals/chemistry , Pyrroles/therapeutic use , Toluene/chemistry , Toluene/therapeutic use , Zinc/metabolism , beta-Lactamases/drug effects , beta-Lactamases/genetics
15.
PLoS Genet ; 12(6): e1006124, 2016 06.
Article En | MEDLINE | ID: mdl-27355376

Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.


Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Escherichia coli K12/genetics , Crops, Agricultural/drug effects , Genomics/methods , Nucleosides/pharmacology , Plant Diseases/microbiology , Plants/microbiology
16.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Article En | MEDLINE | ID: mdl-27238023

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Bacillus subtilis/genetics , Genes, Bacterial , Genes, Essential , CRISPR-Cas Systems , Gene Knockdown Techniques , Gene Library , Gene Regulatory Networks , Molecular Targeted Therapy
17.
Proc Natl Acad Sci U S A ; 112(50): E6862-71, 2015 Dec 15.
Article En | MEDLINE | ID: mdl-26604313

Sensing and responding to nutritional status is a major challenge for microbial life. In Escherichia coli, the global response to amino acid starvation is orchestrated by guanosine-3',5'-bisdiphosphate and the transcription factor DksA. DksA alters transcription by binding to RNA polymerase and allosterically modulating its activity. Using genetic analysis, photo-cross-linking, and structural modeling, we show that DksA binds and acts upon RNA polymerase through prominent features of both the nucleotide-access secondary channel and the active-site region. This work is, to our knowledge, the first demonstration of a molecular function for Sequence Insertion 1 in the ß subunit of RNA polymerase and significantly advances our understanding of how DksA binds to RNA polymerase and alters transcription.


DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/physiology , Escherichia coli/enzymology , DNA-Directed RNA Polymerases/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Models, Molecular , Protein Binding , Transcription, Genetic , Zinc/metabolism
18.
Curr Opin Microbiol ; 27: 86-95, 2015 Oct.
Article En | MEDLINE | ID: mdl-26336012

High-throughput functional genomic technologies are accelerating progress in understanding the diversity of bacterial life and in developing a systems-level understanding of model bacterial organisms. Here we highlight progress in deep-sequencing-based functional genomics, show how whole genome sequencing is enabling phenotyping in organisms recalcitrant to genetic approaches, recount the rapid proliferation of functional genomic approaches to non-growth phenotypes, and discuss how advances are enabling genome-scale resource libraries for many different bacteria.


Bacteria/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , DNA Barcoding, Taxonomic/methods , Genetic Variation , Genomics , High-Throughput Nucleotide Sequencing/methods , Phenotype
19.
J Am Chem Soc ; 134(43): 18074-81, 2012 Oct 31.
Article En | MEDLINE | ID: mdl-23088750

The posttranscriptional modification of ribosomal RNA (rRNA) modulates ribosomal function and confers resistance to antibiotics targeted to the ribosome. The radical S-adenosyl-L-methionine (SAM) methyl synthases, RlmN and Cfr, both methylate A2503 within the peptidyl transferase center of prokaryotic ribosomes, yielding 2-methyl- and 8-methyl-adenosine, respectively. The C2 and C8 positions of adenosine are unusual methylation substrates due to their electrophilicity. To accomplish this reaction, RlmN and Cfr use a shared radical-mediated mechanism. In addition to the radical SAM CX(3)CX(2)C motif, both RlmN and Cfr contain two conserved cysteine residues required for in vivo function, putatively to form (cysteine 355 in RlmN) and resolve (cysteine 118 in RlmN) a covalent intermediate needed to achieve this challenging transformation. Currently, there is no direct evidence for this proposed covalent intermediate. We have further investigated the roles of these conserved cysteines in the mechanism of RlmN. Cysteine 118 mutants of RlmN are unable to resolve the covalent intermediate, either in vivo or in vitro, enabling us to isolate and characterize this intermediate. Additionally, tandem mass spectrometric analyses of mutant RlmN reveal a methylene-linked adenosine modification at cysteine 355. Employing deuterium-labeled SAM and RNA substrates in vitro has allowed us to further clarify the mechanism of formation of this intermediate. Together, these experiments provide compelling evidence for the formation of a covalent intermediate species between RlmN and its rRNA substrate and well as the roles of the conserved cysteine residues in catalysis.


Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , S-Adenosylmethionine/metabolism , Biocatalysis , Escherichia coli Proteins/chemistry , Free Radicals/chemistry , Free Radicals/metabolism , Methyltransferases/chemistry , Molecular Structure , Mutagenesis , S-Adenosylmethionine/chemistry
20.
PLoS Genet ; 6(11): e1001196, 2010 Nov 04.
Article En | MEDLINE | ID: mdl-21079689

Methylation of DNA and of Lysine 9 on histone H3 (H3K9) is associated with gene silencing in many animals, plants, and fungi. In Neurospora crassa, methylation of H3K9 by DIM-5 directs cytosine methylation by recruiting a complex containing Heterochromatin Protein-1 (HP1) and the DIM-2 DNA methyltransferase. We report genetic, proteomic, and biochemical investigations into how DIM-5 is controlled. These studies revealed DCDC, a previously unknown protein complex including DIM-5, DIM-7, DIM-9, CUL4, and DDB1. Components of DCDC are required for H3K9me3, proper chromosome segregation, and DNA methylation. DCDC-defective strains, but not HP1-defective strains, are hypersensitive to MMS, revealing an HP1-independent function of H3K9 methylation. In addition to DDB1, DIM-7, and the WD40 domain protein DIM-9, other presumptive DCAFs (DDB1/CUL4 associated factors) co-purified with CUL4, suggesting that CUL4/DDB1 forms multiple complexes with distinct functions. This conclusion was supported by results of drug sensitivity tests. CUL4, DDB1, and DIM-9 are not required for localization of DIM-5 to incipient heterochromatin domains, indicating that recruitment of DIM-5 to chromatin is not sufficient to direct H3K9me3. DIM-7 is required for DIM-5 localization and mediates interaction of DIM-5 with DDB1/CUL4 through DIM-9. These data support a two-step mechanism for H3K9 methylation in Neurospora.


Chromosomes, Fungal/metabolism , DNA Methylation , Histone-Lysine N-Methyltransferase/metabolism , Multienzyme Complexes/metabolism , Neurospora crassa/enzymology , Neurospora crassa/genetics , Chromosome Segregation/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Genes, Essential/genetics , Genes, Fungal/genetics , Heterochromatin/metabolism , Histone Methyltransferases , Histones/metabolism , Lysine/metabolism , Models, Biological , Protein Binding
...