Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36295329

RESUMEN

In order to clarify the role of R2O3 in the metal-oxide catalysts derived from complex oxide precursors, a series of R1.5Ca0.5NiO4 (R = Nd, Sm, Eu) complex oxides was obtained. A significant systematic increase in the orthorhombic distortion of the R1.5Ca0.5NiO4 structure (K2NiF4 type, Cmce) from Nd to Eu correlates with a corresponding decrease in their ionic radii. A reduction of R1.5Ca0.5NiO4 in the Ar/H2 gas mixture at 800 °C causes a formation of dense agglomerates of CaO and R2O3 coated with spherical 25-30 nm particles of Ni metal. The size of metal particles and oxide agglomerates is similar in all Ni/(R2O3,CaO) composites in the study. Their morphology is rather similar to the products of redox exsolution obtained by the partial reduction of complex oxides. All obtained composites demonstrated a significant catalytic activity in the dry reforming (DRM) and partial oxidation (POM) of methane at 700-800 °C. A systematic decrease in the DRM catalytic activity of composites from Nd to Eu could be attributed to the basicity reduction of R2O3 components of the composite catalysts. The maximum CH4 conversion in POM reaction was observed for Ni/(Sm2O3,CaO), while the maximum selectivity was demonstrated by Nd2O3-based composite. The possible reasons for the observed difference are discussed.

2.
Beilstein J Nanotechnol ; 7: 1960-1970, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144544

RESUMEN

Nanocomposites of Li1.4Ni0.5Mn0.5O2+x and amorphous carbon were obtained by the pyrolysis of linear and cross-linked poly(vinyl alcohol) (PVA) in presence of Li1.4Ni0.5Mn0.5O2+x . In the case of linear PVA, the formation of nanostructured carbon coatings on Li1.4Ni0.5Mn0.5O2+x particles is observed, while for cross-linked PVA islands of mesoporous carbon are located on the boundaries of Li1.4Ni0.5Mn0.5O2+x particles. The presence of the carbon framework leads to a decrease of the polarization upon cycling and of the charge transfer resistance and to an increase in the apparent Li+ diffusion coefficient from 10-16 cm2·s-1 (pure Li1.4Ni0.5Mn0.5O2+x ) to 10-13 cm2·s-1. The nanosized carbon coatings also reduce the deep electrochemical degradation of Li1.4Ni0.5Mn0.5O2+x during electrochemical cycling. The nanocomposite obtained by the pyrolysis of linear PVA demonstrates higher values of the apparent lithium diffusion coefficient, a higher specific capacity and lower values of charge transfer resistance, which can be related to the more uniform carbon coatings and to the significant content of sp2-hybridized carbon detected by XPS and by Raman spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...