Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Biomembr ; 1864(9): 183971, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35643329

RESUMEN

The recombinant OmpF porin of Yersinia pseudotuberculosis as a model of transmembrane protein of the ß-barrel structural family was used to study low growth temperature effect on the structure of the produced inclusion bodies (IBs). This porin showed a very low expression level in E. coli at a growth temperature below optimal 37 °C. The introduction of a N-terminal hexahistidine tag into the mature porin molecule significantly increased the biosynthesis of the protein at low cultivation temperatures. The recombinant His-tagged porin (rOmpF-His) was expressed in E. coli at 30 and 18 °C as inclusion bodies (IB-30 and IB-18). The properties and structural organization of IBs, as well as the structure of rOmpF-His solubilized from the IBs with urea and SDS, were studied using turbidimetry, electron microscopy, dynamic light scattering, optical spectroscopy, and amyloid-specific dyes. IB-18, in comparison with IB-30, has a higher solubility in denaturants, suggesting a difference between IBs in the conformation of the associated polypeptide chains. The spectroscopic analysis revealed that rOmpF-His IBs have a high content of secondary structure with a tertiary-structure elements, including a native-like conformation, the proportion of which in IB-18 is higher than in IB-30. Solubilization of the porin from IBs is accompanied by a modification of its secondary structure. The studied IBs also contain amyloid-like structures. The results obtained in this study expand our knowledge of the structural organization of IBs formed by proteins of different structural classes and also have a contribution into the new approaches development of producing functionally active recombinant membrane proteins.


Asunto(s)
Cuerpos de Inclusión , Proteínas Recombinantes , Yersinia pseudotuberculosis , Escherichia coli/genética , Escherichia coli/metabolismo , Cuerpos de Inclusión/metabolismo , Porinas/química , Porinas/genética , Proteínas Recombinantes/biosíntesis , Temperatura , Yersinia pseudotuberculosis/metabolismo
2.
Protein Sci ; 30(5): 966-981, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33686648

RESUMEN

Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2 , Mg+2 , and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high-affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3.


Asunto(s)
Acetilcolinesterasa/química , Proteínas de Peces/química , Torpedo , Animales , Sitios de Unión , Cationes Bivalentes/química , Cristalografía por Rayos X , Estabilidad de Enzimas , Metales/química
3.
Mol Biosyst ; 13(9): 1854-1862, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28726924

RESUMEN

Irreversible denaturation of membrane proteins in detergent solutions is similar to unfolding of water-soluble multidomain proteins and represents a complex, multistage process. Pore-forming proteins of Gram-negative bacteria are heat-modifiable proteins, i.e., proteins altering their molecular forms (trimers or monomers), and accordingly, their electrophoretic mobilities depending upon denaturation conditions. There are still some contradictory data on the peculiarities of the conformational changes in the porin structure with temperature. Some authors demonstrated the loss of the porin trimeric structure only after unfolding of monomer subunits. Other researchers initially observed the dissociation of porin oligomers into the folded monomers. Using SDS-PAGE, spectroscopic methods and differential scanning calorimetry, a detailed study of thermally induced changes in the spatial structure of OmpF porin from the fish pathogen Yersinia ruckeri (Yr-OmpF) was carried out. The data obtained allowed us to conclude unambiguously that changes in the spatial structure of the monomers of Yr-OmpF precede the dissociation of the porin trimer.


Asunto(s)
Porinas/química , Porinas/metabolismo , Desnaturalización Proteica , Yersinia ruckeri/metabolismo , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Estabilidad Proteica , Estructura Secundaria de Proteína , Desplegamiento Proteico , Termodinámica
4.
Protein Pept Lett ; 22(12): 1060-5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26349609

RESUMEN

Lysophosphatidyletnolamine (LPE) is one of enigmatic lipids of bacteria. It is generated from major membrane lipid - phosphatidylethanolamine at severe changes of the bacterial growth conditions. Accumulation of this phospholipid in cells of Gram-negative enterobacterium Yersinia pseudotuberculosis results in the enhanced thermostability of OmpF-like porin (YOmpF) from the same bacteria. The respective integral conformational rearrangements may disturb the channel permeability of protein under stress conditions. However, role of fatty acid composition of LPE in this effect remained unclear. Present work demonstrated that the level of unsaturated LPE is 3.5 times higher than saturated one in total LPE of bacterial cells exposed to stress (phenol treatment). Unsaturated 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (MOPE) and saturated LPE 1-palmitoyl-2- hydroxy-sn-glycero-3-phosphoethanolamine (MPPE) oppositely affect the conformation of YOmpF. MOPE increases the protein thermal stability due to more dense packing of monomers in porin and preserves its trimeric form at elevated temperature, while MPPE weakens the contact between monomers and promotes dissociation of the protein.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de los fármacos , Lisofosfolípidos/farmacología , Porinas/química , Porinas/efectos de los fármacos , Yersinia pseudotuberculosis/química , Western Blotting , Ácidos Grasos/análisis , Ácidos Grasos/química , Conformación Proteica/efectos de los fármacos , Espectrometría de Fluorescencia , Yersinia pseudotuberculosis/genética
5.
Int J Biol Macromol ; 81: 975-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26407901

RESUMEN

Suicide inactivation is a common mechanism observed for haem peroxidases, in which the enzyme is inactivated as a result of self-oxidation mediated by intermediate highly oxidizing enzyme forms during the catalytic cycle. The time-dependence and the inactivation mechanism of Cytisus multiflorus peroxidase (CMP) by hydrogen peroxide were studied kinetically with four co-substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferulic acid, guaiacol and o-dianisidine). Catalytic activity decreased following the sequence ABTS>guaiacol>ferulic acid>o-dianisidine. Once the intermediate complex (compound III-H2O2) had been formed, competition was established between the catalytic pathway and the suicide inactivation pathway. One mole of CMP afforded around 3790 turnovers of H2O2 for ABTS before its complete inactivation. These results suggest that CMP follows a suicide mechanism, the enzyme not being protected in this case. The mechanism of suicide inactivation is discussed with a view to establishing a broad knowledge base for future rational protein engineering.


Asunto(s)
Cytisus/enzimología , Peróxido de Hidrógeno/farmacología , Activación Enzimática/efectos de los fármacos , Cinética , Análisis de los Mínimos Cuadrados , Factores de Tiempo
6.
Int J Biol Macromol ; 81: 1005-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26416239

RESUMEN

In plants, adverse conditions often induce an increase in reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). H2O2 is reduced to water, and thus becomes detoxified by enzymes such as Cytisus multiflorus peroxidase (CMP). Here, the steady-state kinetics of the H2O2-supported oxidation of different organic substrates by CMP was investigated. Analysis of the initial rates vs. H2O2 and reducing substrate concentrations proved to be consistent with a substrate-inhibited Ping-Pong Bi-Bi reaction mechanism. The phenomenological approach expresses the peroxidase Ping-Pong mechanism in the form of the Michaelis-Menten equation and affords an interpretation of the effects in terms of the kinetic parameters [Formula: see text] , [Formula: see text] , kcat, [Formula: see text] , [Formula: see text] and of the microscopic rate constants, k1 and k3, of the shared three-step catalytic cycle of peroxidases.


Asunto(s)
Cytisus/enzimología , Peroxidasa/metabolismo , Biocatálisis , Guayacol/metabolismo , Peróxido de Hidrógeno/metabolismo , Cinética , Modelos Moleculares , Oxidación-Reducción , Peroxidasa/antagonistas & inhibidores , Especificidad por Sustrato
7.
Biochimie ; 111: 58-69, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25660651

RESUMEN

Palm tree peroxidases are known to be very stable enzymes and the peroxidase from the Chamaerops excelsa (CEP), which has a high pH and thermal stability, is no exception. To date, the structural and molecular events underscoring such biochemical behavior have not been explored in depth. In order to identify the structural characteristics accounting for the high stability of palm tree peroxidases, we solved and refined the X-ray structure of native CEP at a resolution of 2.6 Å. The CEP structure has an overall fold typical of plant peroxidases and confirmed the conservation of characteristic structural elements such as the heme group and calcium ions. At the same time the structure revealed important modifications in the amino acid residues in the vicinity of the exposed heme edge region, involved in substrate binding, that could account for the morphological variations among palm tree peroxidases through the disruption of molecular interactions at the second binding site. These modifications could alleviate the inhibition of enzymatic activity caused by molecular interactions at the latter binding site. Comparing the CEP crystallographic model described here with other publicly available peroxidase structures allowed the identification of a noncovalent homodimer assembly held together by a number of ionic and hydrophobic interactions. We demonstrate, that this dimeric arrangement results in a more stable protein quaternary structure through stabilization of the regions that are highly dynamic in other peroxidases. In addition, we resolved five N-glycosylation sites, which might also contribute to enzyme stability and resistance against proteolytic cleavage.


Asunto(s)
Arecaceae/enzimología , Peroxidasa/química , Proteínas de Plantas/química , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
8.
Int J Biol Macromol ; 72: 718-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25246165

RESUMEN

New plant peroxidase has been isolated to homogeneity from the white Spanish broom Cytisus multiflorus. The enzyme purification steps included homogenization, NH(4)SO(4) precipitation, extraction of broom colored compounds and consecutive chromatography on Phenyl-Sepharose, HiTrap™ SP HP and Superdex-75 and 200. The novel peroxidase was characterized as having a molecular weight of 50 ± 3 kDa. Steady-state tryptophan fluorescence and far-UV circular dichroism (CD) studies, together with enzymatic assays, were carried out to monitor the structural stability of C. multiflorus peroxidase (CMP) at pH 7.0. Thus changes in far-UV CD corresponded to changes in the overall secondary structure of enzyme, while changes in intrinsic tryptophan fluorescence emission corresponded to changes in the tertiary structure of the enzyme. It is shown that the process of CMP denaturation can be interpreted with sufficient accuracy in terms of the simple kinetic scheme, N ⟶ kD, where k is a first-order kinetic constant that changes with temperature following the Arrhenius equation; N is the native state, and D is the denatured state. On the basis of this model, the parameters of the Arrhenius equation were calculated.


Asunto(s)
Cytisus/enzimología , Estabilidad de Enzimas , Peroxidasa/aislamiento & purificación , Dicroismo Circular , Peroxidasa/química , Desnaturalización Proteica , Estructura Secundaria de Proteína , Temperatura
9.
Int J Biol Macromol ; 61: 390-5, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23916643

RESUMEN

The thermal stability of the matrix protein (M protein) of Newcastle disease virus (NDV) has been investigated using high-sensitivity differential scanning calorimetry (DSC) at pH 7.4. The thermal folding/unfolding of M protein at this pH value is a reversible process involving a highly cooperative transition between folded and unfolded monomers with a transition temperature (Tm) of 63 °C, an unfolding enthalpy, ΔH(Tm), of 340 kcal mol(-1), and the difference in heat capacity between the native and denatured states of the protein, ΔCp, of 5.1 kcal K(-1) mol(-1). The heat capacity of the native state of the protein is in good agreement with the values calculated using a structure-based parameterization, whereas the calculated values for the hypothetical fully-unfolded state of the protein is higher than those determined experimentally. This difference between the heat capacity of denatured M protein and the heat capacity expected for an unstructured polypeptide of the same sequence, together with the data derived from the heat-induced changes in the steady-state fluorescence of the protein, indicates that the polypeptide chain maintains a significant amount of residual structure after thermal denaturation.


Asunto(s)
Virus de la Enfermedad de Newcastle/química , Proteínas de la Matriz Viral/química , Rastreo Diferencial de Calorimetría , Concentración de Iones de Hidrógeno , Estabilidad Proteica , Termodinámica , Proteínas de la Matriz Viral/aislamiento & purificación
10.
Chem Biol Interact ; 203(1): 63-6, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23159732

RESUMEN

The photosensitizer, methylene blue (MB), generates singlet oxygen ((1)O2) that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark MB inhibits reversibly, binding being accompanied by a bathochromic shift that can be used to show its displacement by other reversible inhibitors binding to the catalytic 'anionic' subsite (CAS), the peripheral 'anionic' subsite (PAS), or bridging them. Data concerning both reversible and irreversible inhibition are here reviewed. MB protects TcAChE from thermal denaturation, and differential scanning calorimetry reveals a ~8 °C increase in the denaturation temperature. The crystal structure of the MB/TcAChE complex reveals a single MB stacked against W279 in the PAS, pointing down the gorge towards the CAS. The intrinsic fluorescence of the irreversibly inhibited enzyme displays new emission bands that can be ascribed to N'-formylkynurenine (NFK); this was indeed confirmed using anti-NFK antibodies. Mass spectroscopy revealed that two Trp residues, Trp84 in the CAS, and Trp279 in the PAS, were the only Trp residues, out of a total of 14, significantly modified by photo-oxidation, both being converted to NFK. In the presence of competitive inhibitors that displace MB from the gorge, their modification is completely prevented. Thus, photo-oxidative damage caused by MB involves targeted release of (1)O2 by the bound photosensitizer within the aqueous milieu of the active-site gorge.


Asunto(s)
Acetilcolinesterasa/metabolismo , Azul de Metileno/metabolismo , Fotoquimioterapia , Fármacos Fotosensibilizantes/metabolismo , Acetilcolinesterasa/química , Acetilcolinesterasa/genética , Secuencia de Aminoácidos , Animales , Fenómenos Biofísicos , Dominio Catalítico , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Cinética , Azul de Metileno/química , Azul de Metileno/farmacología , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Conformación Proteica , Torpedo
11.
Protein Sci ; 21(8): 1138-52, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22674800

RESUMEN

The photosensitizer, methylene blue (MB), generates singlet oxygen that irreversibly inhibits Torpedo californica acetylcholinesterase (TcAChE). In the dark, it inhibits reversibly. Binding is accompanied by a bathochromic absorption shift, used to demonstrate displacement by other acetylcholinesterase inhibitors interacting with the catalytic "anionic" subsite (CAS), the peripheral "anionic" subsite (PAS), or bridging them. MB is a noncompetitive inhibitor of TcAChE, competing with reversible inhibitors directed at both "anionic" subsites, but a single site is involved in inhibition. MB also quenches TcAChE's intrinsic fluorescence. It binds to TcAChE covalently inhibited by a small organophosphate (OP), but not an OP containing a bulky pyrene. Differential scanning calorimetry shows an ~8° increase in the denaturation temperature of the MB/TcAChE complex relative to native TcAChE, and a less than twofold increase in cooperativity of the transition. The crystal structure reveals a single MB stacked against Trp279 in the PAS, oriented down the gorge toward the CAS; it is plausible that irreversible inhibition is associated with photooxidation of this residue and others within the active-site gorge. The kinetic and spectroscopic data showing that inhibitors binding at the CAS can impede binding of MB are reconciled by docking studies showing that the conformation adopted by Phe330, midway down the gorge, in the MB/TcAChE crystal structure, precludes simultaneous binding of a second MB at the CAS. Conversely, binding of ligands at the CAS dislodges MB from its preferred locus at the PAS. The data presented demonstrate that TcAChE is a valuable model for understanding the molecular basis of local photooxidative damage.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Proteínas de Peces/metabolismo , Azul de Metileno/farmacología , Fármacos Fotosensibilizantes/farmacología , Torpedo/metabolismo , Acetilcolinesterasa/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Peces/química , Modelos Moleculares
12.
J Agric Food Chem ; 60(19): 4765-72, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22534011

RESUMEN

Aqueous crude extracts of a series of plant wastes (agricultural, wild plants, residues from sports activities (grass), ornamental residues (gardens)) from 17 different plant species representative of the typical biodiversity of the Iberian peninsula were investigated as new sources of peroxidases (EC 1.11.1.7). Of these, lentil (Lens culinaris L.) stubble crude extract was seen to provide one of the highest specific peroxidase activities, catalyzing the oxidation of guaiacol in the presence of hydrogen peroxide to tetraguaiacol, and was used for further studies. For the optimum extraction conditions found, the peroxidase activity in this crude extract (110 U mL(-1)) did not vary for at least 15 months when stored at 4 °C (k(inact) = 0.146 year(-1), t(1/2 inact) = 4.75 year), whereas, for comparative purposes, the peroxidase activity (60 U mL(-1)) of horseradish (Armoracia rusticana L.) root crude extract, obtained and stored under the same conditions, showed much faster inactivation kinetics (k(inact) = 2.2 × 10(-3) day(-1), t(1/2 inact) = 315 days). Using guaiacol as an H donor and a universal buffer (see above), all crude extract samples exhibited the highest peroxidase activity in the pH range between 4 and 7. Once semipurified by passing the crude extract through hydrophobic chromatography on phenyl-Sepharose CL-4B, the novel peroxidase (LSP) was characterized as having a purity number (RZ) of 2.5 and three SDS-PAGE electrophoretic bands corresponding to molecular masses of 52, 35, and 18 kDa. The steady-state kinetic study carried out on the H(2)O(2)-mediated oxidation of guaiacol by the catalytic action of this partially purified peroxidase pointed to apparent Michaelian kinetic behavior (K(m)(appH(2)O(2)) = 1.87 mM; V(max)(appH(2)O(2)) = 6.4 mM min(-1); K(m)(app guaicol) = 32 mM; V(max)(app guaicol) = 9.1 mM min(-1)), compatible with the two-substrate ping-pong mechanism generally accepted for peroxidases. Finally, after the effectiveness of the crude extracts of LSP in oxidizing and removing from solution a series of last-generation dyes present in effluents from textile industries (1) had been checked, a steady-state kinetic study of the H(2)O(2)-mediated oxidation and decolorization of Green Domalan BL by the catalytic action of the lentil stubble extract was carried out, with the observation of the same apparent Michaelian kinetic behavior (K(m)(appGD) = 471 µM; V(max)(appGD)= 23 µM min(-1)). Further studies are currently under way to address the application of this LSP crude extract for the clinical and biochemical analysis of biomarkers.


Asunto(s)
Lens (Planta)/enzimología , Peroxidasa/química , Proteínas de Plantas/química , Agricultura , Estabilidad de Enzimas , Residuos Industriales/análisis , Cinética , Lens (Planta)/química , Peroxidasa/aislamiento & purificación , Peroxidasa/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo
13.
Biochimie ; 94(4): 1048-56, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22269933

RESUMEN

The tubular immunostimulating complex (TI-complex) is a novel nanoparticulate antigen delivery system consisting of cholesterol, triterpene glycoside cucumarioside A(2)-2, and glycolipid monogalactosyldiacylglycerol (MGDG) isolated from marine macrophytes. MGDG is crucial for the formation of a lipid matrix for the protein antigen incorporated in TI-complexes. Fatty acid composition and the physical state of this glycolipid depend on the taxonomic position of marine macrophytes. Therefore, the aim of the present work was to study the capacity of MGDGs, isolated from five species of marine macrophytes, to influence conformation and to enhance immunogenicity of porin from Yersinia pseudotuberculosis (YOmpF) as a model antigen of subunit vaccine based on TI-complexes. The trimeric porin was chosen for these experiments, because it was approximately two times more immunogenic than monomeric porin incorporated in TI-complexes. Immunization of mice with YOmpF within TI-complexes, comprised of different MGDGs, revealed a dependence of the immunostimulating effect of TI-complexes on the microvicosity of this glycolipid. TI-complexes comprising MGDGs from Sargassum pallidum and Ulva fenestrata with medium microviscosity induced maximal levels of anti-porin antibodies (four times higher when compared with those induced by pure porin). The adjuvant effect of TI-complexes based on other MGDGs varied by 2.8, 2.3 and 1.3 times for TI-complexes comprised of MGDGs from Zostera marina, Ahnfeltia tobuchiensis, and Laminaria japonica, respectively. MGDGs are also able to influence cytokine mechanisms of immunological regulation. DSC and spectroscopic studies showed that maximal immunostimulating effect of TI-complexes correlated with a moderate stabilizing influence of MGDGs from S. pallidum and U. fenestrata on the conformation of porin. The results obtained suggest lipid "nanofluidics" as a novel strategy for optimizing the immune response to protein antigens within lipid particulate systems.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Antígenos Bacterianos/inmunología , Galactolípidos/farmacología , Extractos Vegetales/farmacología , Porinas/inmunología , Adyuvantes Inmunológicos/química , Adyuvantes Inmunológicos/aislamiento & purificación , Algoritmos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/química , Rastreo Diferencial de Calorimetría , Citocinas/sangre , Ácidos Grasos/química , Femenino , Galactolípidos/química , Galactolípidos/aislamiento & purificación , Inmunización , Laminaria/química , Ratones , Ratones Endogámicos BALB C , Nanopartículas , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Porinas/química , Estructura Secundaria de Proteína , Rhodophyta/química , Sargassum/química , Espectrometría de Fluorescencia , Ulva/química , Viscosidad , Yersinia pseudotuberculosis , Zosteraceae/química
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1641-4, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139187

RESUMEN

Plant peroxidases are presently used extensively in a wide range of biotechnological applications owing to their high environmental and thermal stability. As part of efforts towards the discovery of appealing new biotechnological enzymes, the peroxidase from leaves of the palm tree Chamaerops excelsa (CEP) was extracted, purified and crystallized in its native form. An X-ray diffraction data set was collected at a synchrotron source and data analysis showed that the CEP crystals belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 70.2, b = 100.7, c = 132.3 Å.


Asunto(s)
Arecaceae/enzimología , Peroxidasas/química , Cristalización , Cristalografía por Rayos X , Peroxidasas/aislamiento & purificación
15.
Int J Biol Macromol ; 49(5): 1078-82, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21925205

RESUMEN

The concentration and time-dependences and the mechanism of the inactivation of Chamaerops excelsa peroxidase (CEP) by hydrogen peroxide were studied kinetically with four co-substrates (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), guaiacol, o-dianisidine and o-phenylenediamine). The turnover number (r) of H(2)O(2) required to complete the inactivation of the enzyme varied for the different substrates, the enzyme most resistant to inactivation (r=4844) with ABTS being the most useful substrate for biotechnological applications, opening a new avenue of enquiry with this peroxidase.


Asunto(s)
Arecaceae/enzimología , Biotecnología/métodos , Peróxido de Hidrógeno/efectos adversos , Peroxidasa/antagonistas & inhibidores , Hojas de la Planta/enzimología , Proteínas de Plantas/antagonistas & inhibidores , Arecaceae/química , Benzotiazoles/metabolismo , Cromatografía , Dianisidina/metabolismo , Electroforesis en Gel de Poliacrilamida , Guayacol/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Oxidación-Reducción/efectos de los fármacos , Peroxidasa/aislamiento & purificación , Peroxidasa/metabolismo , Fenilendiaminas/metabolismo , Hojas de la Planta/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Soluciones , Especificidad por Sustrato , Ácidos Sulfónicos/metabolismo
16.
J Nanobiotechnology ; 9: 35, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21888630

RESUMEN

BACKGROUND: There is an urgent need to develop safe and effective adjuvants for the new generation of subunit vaccines. We developed the tubular immunostimulating complex (TI-complex) as a new nanoparticulate antigen delivery system. The morphology and composition of TI-complexes principally differ from the known vesicular immunostimulating complexes (ISCOMs). However, methodology for the preparation of TI-complexes has suffered a number of shortcomings. The aim of the present work was to obtain an antigen carrier consisting of triterpene glycosides from Cucumaria japonica, cholesterol, and monogalactosyldiacylglycerol from marine macrophytes with reproducible properties and high adjuvant activity. RESULTS: The cucumarioside A2-2 - cholesterol - MGalDG ratio of 6:2:4 (by weight) was found to provide the most effective formation of TI-complexes and the minimum hemolytic activity in vitro. Tubules of TI-complexes have an outer diameter of about 16 nm, an inner diameter of 6 nm, and a length of 500 nm. A significant dilution by the buffer gradually destroyed the tubular nanoparticles. The TI-complex was able to increase the immunogenicity of the protein antigens from Yersinia pseudotuberculosis by three to four times. CONCLUSIONS: We propose an optimized methodology for the preparation of homogeneous TI-complexes containing only tubular particles, which would achieve reproducible immunization results. We suggest that the elaborated TI-complexes apply as a universal delivery system for different subunit antigens within anti-infectious vaccines and enhance their economic efficacy and safety.


Asunto(s)
Galactolípidos/inmunología , ISCOMs/inmunología , Saponinas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/inmunología , Colesterol/inmunología , Glicósidos/inmunología , Hemolíticos/administración & dosificación , Humanos , Ratones , Nanopartículas/administración & dosificación , Triterpenos/inmunología , Yersinia pseudotuberculosis/inmunología
17.
J Struct Biol ; 169(2): 226-42, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19854274

RESUMEN

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85A. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP.


Asunto(s)
Araceae/enzimología , Modelos Moleculares , Peroxidasa/química , Conformación Proteica , Secuencia de Aminoácidos , Secuencia de Bases , Cristalización , Cartilla de ADN/genética , ADN Complementario/genética , Glicosilación , Cinética , Datos de Secuencia Molecular , Peroxidasa/genética , Peroxidasa/metabolismo , Análisis de Secuencia de ADN , Espectrometría de Masas en Tándem
18.
Int J Biol Macromol ; 45(5): 524-31, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19786047

RESUMEN

Adenylate kinase (AK) from the sulphate-reducing bacterium Desulfovibrio gigas (AK) has been characterized earlier as a Co(2+)/Zn(2+)-containing enzyme, which is an unusual characteristic for adenylate kinases from Gram-negative bacteria, in which these enzymes are normally devoid of metal ions. AK was overexpressed in E. coli and homogeneous Co(2+)-, Zn(2+)- and Fe(2+)-forms of the enzyme were obtained under in vivo conditions. Their structural stability and spectroscopic and kinetic properties were compared. The thermal denaturation of Co(2+)- and Zn(2+)-forms of AK was studied as a cooperative two-state process, sufficiently reversible at pH 10, which can be correctly interpreted in terms of a simple two-state thermodynamic model. In contrast, the thermally induced denaturation of Fe(2+)-AK is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Practically identical contents of secondary-structure elements were found for all the metal-chelated-forms of AK upon analysis of circular dichroism data, while their tertiary structures were significantly different. The peculiar tertiary structure of Fe(2+)-AK, in contrast to Co(2+)- and Zn(2+)-AK, and the consequent changes in the physico-chemical and enzymatic properties of the enzyme are discussed.


Asunto(s)
Quelantes/farmacología , Cobalto/química , Desulfovibrio gigas/metabolismo , Bacterias Gramnegativas/metabolismo , Hierro/química , Zinc/química , Dicroismo Circular , Clonación Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Concentración de Iones de Hidrógeno , Cinética , Conformación Proteica , Estructura Secundaria de Proteína , Espectrofotometría/métodos , Espectrofotometría Ultravioleta/métodos , Termodinámica
19.
Int J Biol Macromol ; 44(4): 326-32, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19428462

RESUMEN

The structural stability of a peroxidase, a dimeric protein from palm tree Chamaerops excelsa leaves (CEP), has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism and steady-state tryptophan fluorescence at pH 3. The thermally induced denaturation of CEP at this pH value is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, leading to the conclusion that in solution CEP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of CEP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N-->kD, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate.


Asunto(s)
Arecaceae/enzimología , Peroxidasa/química , Peroxidasa/metabolismo , Temperatura , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Estabilidad de Enzimas , Fluorescencia , Concentración de Iones de Hidrógeno , Peroxidasa/aislamiento & purificación
20.
Biochemistry ; 48(3): 563-74, 2009 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-19115961

RESUMEN

The dimeric form of Torpedo californica acetylcholinesterase provides a valuable experimental system for studying transitions between native, partially unfolded, and unfolded states since long-lived partially unfolded states can be generated by chemical modification of a nonconserved buried cysteine residue, Cys 231, by denaturing agents, by oxidative stress, and by thermal inactivation. Elucidation of the 3D structures of complexes of Torpedo californica acetylcholinesterase with a repertoire of reversible inhibitors permits their classification into three categories: (a) active-site directed inhibitors, which interact with the catalytic anionic subsite, at the bottom of the active-site gorge, such as edrophonium and tacrine; (b) peripheral anionic site inhibitors, which interact with a site at the entrance to the gorge, such as propidium and d-tubocurarine; and (c) elongated gorge-spanning inhibitors, which bridge the two sites, such as BW284c51 and decamethonium. The effects of these three categories of reversible inhibitors on the stability of Torpedo californica acetylcholinesterase were investigated using spectroscopic techniques and differential scanning calorimetry. Thermodynamic parameters obtained calorimetrically permitted quantitative comparison of the effects of the inhibitors on the enzyme's thermal stability. Peripheral site inhibitors had a relatively small effect, while gorge-spanning ligands and those binding at the catalytic anionic site, had a much larger stabilizing effect. The strongest effect was, however, observed with the polypeptide toxin, fasciculin II (FasII), even though, in terms of its binding site, it belongs to the category of peripheral site ligands. The stabilizing effect of the ligands binding at the anionic subsite of the active site, like that of the gorge-spanning ligands, may be ascribed to their capacity to stabilize the interaction between the two subdomains of the enzyme. The effect of fasciculin II may be ascribed to the large surface area of interaction (>2000 A(2)) between the two proteins. Stabilization of Torpedo californica acetylcholinesterase by both divalent cations and chemical chaperones was earlier shown to be due to a shift in equilibrium between the native state and a partially unfolded state ( Millard et al. ( 2003 ) Protein Sci. 12 , 2337 - 2347 ). The low molecular weight inhibitors used in the present study may act similarly and can thus be considered as pharmacological chaperones for stabilizing the fully folded native form of the enzyme.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Torpedo/metabolismo , Animales , Bencenamina, 4,4'-(3-oxo-1,5-pentanodiil)bis(N,N-dimetil-N-2-propenil-), Dibromuro/farmacología , Calorimetría , Compuestos de Decametonio/farmacología , Disulfuros/metabolismo , Venenos Elapídicos/farmacología , Entropía , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Guanidina/farmacología , Humanos , Cinética , Ligandos , Espectroscopía de Resonancia Magnética , Desnaturalización Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Estructura Secundaria de Proteína , Marcadores de Spin , Tacrina/farmacología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA