Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(13)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37795785

RESUMEN

We develop a Stockmayer fluid model that accounts for the dielectric responses of polar solvents (water, MeOH, EtOH, acetone, 1-propanol, DMSO, and DMF) and NaCl solutions. These solvent molecules are represented by Lennard-Jones (LJ) spheres with permanent dipole moments and the ions by charged LJ spheres. The simulated dielectric constants of these liquids are comparable to experimental values, including the substantial decrease in the dielectric constant of water upon the addition of NaCl. Moreover, the simulations predict an increase in the dielectric constant when considering the influence of ion translations in addition to the orientation of permanent dipoles.

2.
J Phys Chem B ; 124(22): 4598-4604, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32368916

RESUMEN

We calculate the solvation energy of monovalent and divalent ions in various liquids with coarse-grained molecular dynamics simulations. Our theory treats the solvent as a Stockmayer fluid, which accounts for the intrinsic dipole moment of molecules and the rotational dynamics of the dipoles. Despite the simplicity of the model, we obtain qualitative agreement between the simulations and experimental data for the free energy and enthalpy of ion solvation, which indicates that the primary contribution to the solvation energy arises mainly from the first and possibly second solvation shells near the ions. Our results suggest that a Stockmayer fluid can serve as a reference model that enables direct comparison between theory and experiment and may be invoked to scale up electrostatic interactions from the atomic to the molecular length scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...