Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; : 107494, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925326

RESUMEN

The commitment of stem cells to differentiate into osteoblasts is a highly regulated and complex process that involves the coordination of extrinsic signals and intrinsic transcriptional machinery. While rodent osteoblastic differentiation has been extensively studied, research on human osteogenesis has been limited by cell sources and existing models. Here, we systematically dissect hPSC-derived osteoblasts to identify functional membrane proteins and their downstream transcriptional networks involved in human osteogenesis. Our results reveal an enrichment of type II transmembrane serine protease CORIN in humans but not rodent osteoblasts. Functional analyses demonstrated that CORIN depletion significantly impairs osteogenesis. Genome-wide ChIP enrichment and mechanistic studies show that p38 MAPK-mediated CEBPD upregulation is required for CORIN-modulated osteogenesis. Contrastingly, the type I transmembrane heparan sulfate proteoglycan SDC1 enriched in MSCs exerts a negative regulatory effect on osteogenesis through a similar mechanism. ChIP-seq, bulk and single-cell transcriptomes, and functional validations indicated that CEBPD plays a critical role in controlling osteogenesis. In summary, our findings uncover previously unrecognized CORIN-mediated CEBPD transcriptomic networks in driving human osteoblast lineage commitment.

2.
Prion ; 18(1): 72-86, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38676289

RESUMEN

Infectious prions are resistant to degradation and remain infectious in the environment for several years. Chronic wasting disease (CWD) has been detected in cervids inhabiting North America, the Nordic countries, and South Korea. CWD-prion spread is partially attributed to carcass transport and disposal. We employed a forensic approach to investigate an illegal carcass dump site connected with a CWD-positive herd. We integrated anatomic, genetic, and prion amplification methods to discover CWD-positive remains from six white-tailed deer (Odocoileus virginianus) and, using microsatellite markers, confirmed a portion originated from the CWD-infected herd. This approach provides a foundation for future studies of carcass prion transmission risk.


Asunto(s)
Ciervos , Priones , Enfermedad Debilitante Crónica , Animales , Enfermedad Debilitante Crónica/transmisión , Priones/genética , Priones/metabolismo , Repeticiones de Microsatélite/genética
3.
Cell Reprogram ; 24(6): 324-326, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36409720

RESUMEN

By dissecting and comparing the transcriptional trajectories and epigenomic traits of reprogramming and transforming cells at the single-cell resolution, Huyghe et al discovered Bcl11b and Atoh8, two key transcription factors controlling cell plasticity during pluripotent reprogramming and oncogenic transformation.


Asunto(s)
Plasticidad de la Célula , Factores de Transcripción , Humanos , Transformación Celular Neoplásica/genética , Proteínas Supresoras de Tumor , Reprogramación Celular , Proteínas Represoras
4.
Investig Clin Urol ; 62(6): 611-622, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34729961

RESUMEN

The urinary tract likely plays a role in the development of various urinary diseases due to the recently recognized notion that urine is not sterile. In this mini review, we summarize the current literature regarding the urinary microbiome and mycobiome and its relationship to various urinary diseases. It has been recently discovered that the healthy urinary tract contains a host of microorganisms, creating a urinary microbiome. The relative abundance and type of bacteria varies, but generally, deviations in the standard microbiome are observed in individuals with urologic diseases, such as bladder cancer, benign prostatic hyperplasia, urgency urinary incontinence, overactive bladder syndrome, interstitial cystitis, bladder pain syndrome, and urinary tract infections. However, whether this change is causative, or correlative has yet to be determined. In summary, the urinary tract hosts a complex microbiome. Changes in this microbiome may be indicative of urologic diseases and can be tracked to predict, prevent, and treat them in individuals. However, current analytical and sampling collection methods may present limitations to the development in the understanding of the urinary microbiome and its relationship with various urinary diseases. Further research on the differences between healthy and diseased microbiomes, the long-term effects of antibiotic treatments on the urobiome, and the effect of the urinary mycobiome on general health will be important in developing a comprehensive understanding of the urinary microbiome and its relationship to the human body.


Asunto(s)
Metagenoma , Microbiota/fisiología , Sistema Urinario/microbiología , Enfermedades Urológicas , Causalidad , Humanos , Enfermedades Urológicas/epidemiología , Enfermedades Urológicas/microbiología , Enfermedades Urológicas/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...