Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
ACS Nano ; 18(11): 8029-8037, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38458609

Phase-change memory (PCM) devices have great potential as multilevel memory cells and artificial synapses for neuromorphic computing hardware. However, their practical use is hampered by resistance drift, a phenomenon commonly attributed to structural relaxation or electronic mechanisms primarily in the context of bulk effects. In this study, we reevaluate the electrical manifestation of resistance drift in sub-100 nm Ge2Sb2Te5 (GST) PCM devices, focusing on the contributions of bulk vs interface effects. We employ a combination of measurement techniques to elucidate the current transport mechanism and the electrical manifestation of resistance drift. Our steady-state temperature-dependent measurements reveal that resistance in these devices is predominantly influenced by their electrical contacts, with conduction occurring through thermionic emission (Schottky) at the contacts. Additionally, temporal current-voltage characterization allows us to link the resistance drift to a time-dependent increase in the Schottky barrier height. These findings provide valuable insights, pinpointing the primary contributor to resistance drift in PCM devices: the Schottky barrier height for hole injection at the interface. This underscores the significance of contacts (interface) in the electrical manifestation of drift in PCM devices.

2.
ACS Appl Mater Interfaces ; 9(35): 29889-29900, 2017 Sep 06.
Article En | MEDLINE | ID: mdl-28800213

Migration of additives to organic/metal interfaces can be used to self-generate interlayers in organic electronic devices. To generalize this approach for various additives, metals, and organic electronic devices it is first necessary to study the dynamics of additive migration from the bulk to the top organic/metal interface. In this study, we focus on a known cathode interlayer material, polyethylene glycol (PEG), as additive in P3HT:PC71BM blends and study its migration to the blend/Al interface during metal deposition and its effect on organic solar cell (OSC) performance. Using dynamic secondary ion mass spectroscopy (DSIMS) depth profiles and X-ray photoelectron spectroscopy surface analysis (XPS), we quantitatively correlate the initial concentration of PEG in the blend and sequence of thermal annealing/metal deposition processes with the organic/Al interfacial composition. We find that PEG is initially distributed within the film according to the kinetics of the spin coating process, i.e., the majority of PEG accumulates at the bottom substrate, while the minority resides in the film. During electrode evaporation, PEG molecules kinetically "trapped" near the film surface migrate to the organic/Al interface to reduce the interfacial energy. This diffusion-limited process is enhanced with the initial concentration of PEG in the solution and with thermal annealing after metal deposition. In contrast, annealing the film before metal deposition stalls PEG migration. This mechanism is supported by corresponding OSC devices showing that Voc increases with PEG content at the interface, up to a saturation value associated with the formation of a continuous PEG interlayer. Presence of a continuous interlayer excludes the driving force for further migration of PEG to the interface. Revealing this mechanism provides practical insight for judicious selection of additives and processing conditions for interfacial engineering of spontaneously generated interlayers.

...