Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Curr Med Chem ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38638038

AIM: This study aimed to investigate the antioxidant properties, cytotoxic activity, and apoptotic effects of astaxanthin (ASX) on genes and pathways involved in breast cancer in Balb/c mice models injected with the 4T1 cell line. BACKGROUND: ASX could inhibit some tumor progression by using in vivo and in vitro models. OBJECTIVE: The effect of ASX on breast cancer was not fully understood till now. METHOD: In an in vivo model, 4T1 cells-injected mice were administered with different concentrations of ASX (100 and 200 mg/kg), and histopathological evaluations were done using an optical microscope and the hematoxylin and eosin (H&E) staining. The real- time PCR investigated the expression levels of B-cell lymphoma 2-associated X (Bax), B-cell lymphoma 2 (Bcl-2), and Caspase 3 genes in mice treated with 100 and 200 mg/kg ASX. Also, the level of superoxide dismutase (SOD) and malondialdehyde (MDA) were examined in ASX-treated cancer mice. RESULTS: ASX (200 mg/kg) caused a significant reduction in the mitotic cell count of tumor tissues compared to ASX (100 mg/kg). The antiproliferative effects of different concentrations of ASX were shown based on the MTT results. The treatment of breast tumor mice with both concentrations of ASX, especially 200 mg/kg, elevated the expression of Caspase 3, Bax, and SOD enzyme levels and decreased Bcl-2 expression and MDA enzyme levels. CONCLUSION: ASX can be considered a promising alternative treatment for breast cancer.

2.
Cell Mol Biol Lett ; 27(1): 35, 2022 May 04.
Article En | MEDLINE | ID: mdl-35508982

The progress of genetic engineering in the 1970s brought about a paradigm shift in genome editing technology. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a flexible means to target and modify particular DNA sequences in the genome. Several applications of CRISPR/Cas9 are presently being studied in cancer biology and oncology to provide vigorous site-specific gene editing to enhance its biological and clinical uses. CRISPR's flexibility and ease of use have enabled the prompt achievement of almost any preferred alteration with greater efficiency and lower cost than preceding modalities. Also, CRISPR/Cas9 technology has recently been applied to improve the safety and efficacy of chimeric antigen receptor (CAR)-T cell therapies and defeat tumor cell resistance to conventional treatments such as chemotherapy and radiotherapy. The current review summarizes the application of CRISPR/Cas9 in cancer therapy. We also discuss the present obstacles and contemplate future possibilities in this context.


Gene Editing , Neoplasms , CRISPR-Cas Systems/genetics , Genome , Humans , Neoplasms/genetics , Neoplasms/therapy
3.
Front Bioeng Biotechnol ; 9: 775309, 2021.
Article En | MEDLINE | ID: mdl-34869290

During recent years, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) technologies have been noticed as a rapidly evolving tool to deliver a possibility for modifying target sequence expression and function. The CRISPR/Cas9 tool is currently being used to treat a myriad of human disorders, ranging from genetic diseases and infections to cancers. Preliminary reports have shown that CRISPR technology could result in valued consequences for the treatment of Duchenne muscular dystrophy (DMD), cystic fibrosis (CF), ß-thalassemia, Huntington's diseases (HD), etc. Nonetheless, high rates of off-target effects may hinder its application in clinics. Thereby, recent studies have focused on the finding of the novel strategies to ameliorate these off-target effects and thereby lead to a high rate of fidelity and accuracy in human, animals, prokaryotes, and also plants. Meanwhile, there is clear evidence indicating that the design of the specific sgRNA with high efficiency is of paramount importance. Correspondingly, elucidation of the principal parameters that contributed to determining the sgRNA efficiencies is a prerequisite. Herein, we will deliver an overview regarding the therapeutic application of CRISPR technology to treat human disorders. More importantly, we will discuss the potent influential parameters (e.g., sgRNA structure and feature) implicated in affecting the sgRNA efficacy in CRISPR/Cas9 technology, with special concentration on human and animal studies.

...