Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 43
1.
Clin Genet ; 102(1): 72-77, 2022 07.
Article En | MEDLINE | ID: mdl-35347702

Pathogenic variants in IQ motif and SEC7 domain containing protein 2 (IQSEC2) gene cause a variety of neurodevelopmental disorders, with intellectual disability as a uniform feature. We report five cases, each with a novel missense variant in the pleckstrin homology (PH) domain of the IQSEC2 protein. Male patients all present with moderate to profound intellectual disability, significant delays or absent language and speech and variable seizures. We describe the phenotypic spectrum associated with missense variants in PH domain of IQSEC2, further delineating the genotype-phenotype correlation for this X-linked gene.


Brain Diseases , Intellectual Disability , Guanine Nucleotide Exchange Factors/genetics , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mutation , Phenotype , Pleckstrin Homology Domains
2.
Eur J Med Genet ; 64(11): 104315, 2021 Nov.
Article En | MEDLINE | ID: mdl-34419634

Pathogenic variants in ARX lead to a variety of phenotypes with intellectual disability being a uniform feature. Other features can include severe epilepsy, spasticity, movement disorders, agenesis of the corpus callosum, lissencephaly, hydranencephaly and ambiguous genitalia in males. We present the first report of monozygotic female twins with a de novo ARX pathogenic variant (c.1406_1415del; p. Ala469Aspfs*20), predicted to result in a truncated ARX protein missing the important regulatory Aristaless domain. The twins presented with profound developmental delay and seizures, consistent with the known genotype-phenotype correlation. Twin 2's features were significantly more severe. She also developed chorea; the first time this movement disorder has been seen in an ARX variant other than an expansion of the first polyalanine tract. Differential X-chromosome inactivation was the most likely explanation for the differing severities but could not be conclusively proven.


Chorea/genetics , Developmental Disabilities/genetics , Homeodomain Proteins/genetics , Loss of Function Mutation , Transcription Factors/genetics , Chorea/pathology , Developmental Disabilities/pathology , Female , Humans , Infant , Phenotype , Twins, Monozygotic , X Chromosome Inactivation
3.
Hum Mutat ; 42(7): 835-847, 2021 07.
Article En | MEDLINE | ID: mdl-33847015

The pioneering discovery research of X-linked intellectual disability (XLID) genes has benefitted thousands of individuals worldwide; however, approximately 30% of XLID families still remain unresolved. We postulated that noncoding variants that affect gene regulation or splicing may account for the lack of a genetic diagnosis in some cases. Detecting pathogenic, gene-regulatory variants with the same sensitivity and specificity as structural and coding variants is a major challenge for Mendelian disorders. Here, we describe three pedigrees with suggestive XLID where distinctive phenotypes associated with known genes guided the identification of three different noncoding variants. We used comprehensive structural, single-nucleotide, and repeat expansion analyses of genome sequencing. RNA-Seq from patient-derived cell lines, reverse-transcription polymerase chain reactions, Western blots, and reporter gene assays were used to confirm the functional effect of three fundamentally different classes of pathogenic noncoding variants: a retrotransposon insertion, a novel intronic splice donor, and a canonical splice variant of an untranslated exon. In one family, we excluded a rare coding variant in ARX, a known XLID gene, in favor of a regulatory noncoding variant in OFD1 that correlated with the clinical phenotype. Our results underscore the value of genomic research on unresolved XLID families to aid novel, pathogenic noncoding variant discovery.


Intellectual Disability , Gene Expression , Genes, X-Linked , Genomics , Humans , Intellectual Disability/diagnosis , Pedigree
4.
Neurobiol Dis ; 153: 105329, 2021 06.
Article En | MEDLINE | ID: mdl-33711494

Children with severe intellectual disability have an increased prevalence of refractory seizures. Steroid treatment may improve seizure outcomes, but the mechanism remains unknown. Here we demonstrate that short term, daily delivery of an exogenous steroid 17ß-estradiol (40 ng/g) in early postnatal life significantly reduced the number and severity of seizures, but did not improve behavioural deficits, in mice modelling mutations in the Aristaless-related homeobox gene (ARX), expanding the first (PA1) or second (PA2) polyalanine tract. Frequency of observed seizures on handling (n = 14/treatment/genotype) were significantly reduced in PA1 (32% reduction) and more modestly reduced in PA2 mice (14% reduction) with steroid treatment compared to vehicle. Spontaneous seizures were assessed (n = 7/treatment/genotype) at 7 weeks of age coinciding with a peak of seizure activity in untreated mice. PA1 mice treated with steroids no longer present with the most severe category of prolonged myoclonic seizures. Treated PA2 mice had an earlier onset of seizures coupled with a subsequent reduction in seizures later in postnatal life, with a complete absence of any seizures during the analysis at 7 weeks of age. Despite the reduction in seizures, 17ß-estradiol treated mice showed no improvement in behavioural or cognitive outcomes in adulthood. For the first time we show that these deficits due to mutations in Arx are already present before seizure onset and do not worsen with seizures. ARX is a transcription factor and Arx PA mutant mice have deregulated transcriptome profiles in the developing embryonic brain. At postnatal day 10, treatment completion, RNAseq identified 129 genes significantly deregulated (Log2FC > ± 0.5, P-value<0.05) in the frontal cortex of mutant compared to wild-type mice. This list reflects genes deregulated in disease and was particularly enriched for known genes in neurodevelopmental disorders and those involved in signalling and developmental pathways. 17ß-estradiol treatment of mutant mice significantly deregulated 295 genes, with only 23 deregulated genes overlapping between vehicle and steroid treated mutant mice. We conclude that 17ß-estradiol treatment recruits processes and pathways to reduce the frequency and severity of seizures in the Arx PA mutant mice but does not precisely correct the deregulated transcriptome nor improve mortality or behavioural and cognitive deficits.


Behavior, Animal/drug effects , Estradiol/pharmacology , Estrogens/pharmacology , Gene Expression Regulation/drug effects , Homeodomain Proteins/genetics , Seizures/genetics , Transcription Factors/genetics , Animals , Animals, Newborn , Early Medical Intervention , Gene Expression Regulation/genetics , Humans , Infant, Newborn , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Mice , Neurodevelopmental Disorders/genetics , Peptides/genetics , Seizures/physiopathology , Spasms, Infantile/genetics , Spasms, Infantile/physiopathology
5.
Neurology ; 96(13): e1770-e1782, 2021 03 30.
Article En | MEDLINE | ID: mdl-33568551

OBJECTIVE: To assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE). METHODS: We performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15). RESULTS: Eight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity. Eleven diagnoses were made in the 15 MGP-negative individuals (68%); the majority (n = 10) involved genes not included in the panel, particularly in individuals with postneonatal onset of seizures and those with more complex presentations including movement disorders, dysmorphic features, or multiorgan involvement. A total of 42% of diagnoses were autosomal recessive or X-chromosome linked. CONCLUSION: WGS was able to improve diagnostic yield over ES primarily through the detection of complex structural variants (n = 3). The higher diagnostic yield was otherwise better attributed to the power of re-analysis rather than inherent advantages of the WGS platform. Additional research is required to assist in the assessment of pathogenicity of novel noncoding and complex structural variants and further improve diagnostic yield for patients with DEE and other neurogenetic disorders.


Exome Sequencing , Spasms, Infantile/diagnosis , Whole Genome Sequencing , Child, Preschool , Chromosome Inversion/genetics , Chromosomes, Human, X/genetics , Female , Humans , Infant , MEF2 Transcription Factors/genetics , Male , Nerve Tissue Proteins/genetics , Pathology, Molecular , Rho Guanine Nucleotide Exchange Factors/genetics , Spasms, Infantile/genetics
6.
Hum Mutat ; 41(8): 1407-1424, 2020 08.
Article En | MEDLINE | ID: mdl-32383243

The need to interpret the pathogenicity of novel missense variants of unknown significance identified in the homeodomain of X-chromosome aristaless-related homeobox (ARX) gene prompted us to assess the utility of conservation and constraint across these domains in multiple genes compared to conventional in vitro functional analysis. Pathogenic missense variants clustered in the homeodomain of ARX contribute to intellectual disability (ID) and epilepsy, with and without brain malformation in affected males. Here we report novel c.1112G>A, p.Arg371Gln and c.1150C>T, p.Arg384Cys variants in male patients with ID and severe seizures. The third case of a male patient with a c.1109C>T, p.Ala370Val variant is perhaps the first example of ID and autism spectrum disorder (ASD), without seizures or brain malformation. We compiled data sets of pathogenic variants from ClinVar and presumed benign variation from gnomAD and demonstrated that the high levels of sequence conservation and constraint of benign variation within the homeodomain impacts upon the ability of publicly available in silico prediction tools to accurately discern likely benign from likely pathogenic variants in these data sets. Despite this, considering the inheritance patterns of the genes and disease variants with the conservation and constraint of disease variants affecting the homeodomain in conjunction with current clinical assessments may assist in predicting the pathogenicity of missense variants, particularly for genes with autosomal recessive and X-linked patterns of disease inheritance, such as ARX. In vitro functional analysis demonstrates that the transcriptional activity of all three variants was diminished compared to ARX-Wt. We review the associated phenotypes of the published cases of patients with ARX homeodomain variants and propose expansion of the ARX-related phenotype to include severe ID and ASD without brain malformations or seizures. We propose that the use of the constraint and conservation data in conjunction with consideration of the patient phenotype and inheritance pattern may negate the need for the experimental functional validation currently required to achieve a diagnosis.


Epilepsy/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Transcription Factors/genetics , Adolescent , Amino Acid Sequence , Autism Spectrum Disorder/genetics , Child, Preschool , Conserved Sequence , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , Male , Mutation, Missense , Pedigree , Phenotype , Protein Domains , Young Adult
7.
Hum Mol Genet ; 28(24): 4089-4102, 2019 12 15.
Article En | MEDLINE | ID: mdl-31691806

A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.


Histone Demethylases/metabolism , Neurodevelopmental Disorders/metabolism , Animals , Caenorhabditis elegans , Cell Line , DNA-Binding Proteins/metabolism , Female , HEK293 Cells , Histone Deacetylase Inhibitors/pharmacology , Histone Demethylases/genetics , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Male , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Neurodevelopmental Disorders/genetics , Neurons/metabolism , Promoter Regions, Genetic , Signal Transduction , Transcription Factors/metabolism , Vorinostat/pharmacology
8.
Life Sci Alliance ; 2(4)2019 08.
Article En | MEDLINE | ID: mdl-31439632

Clinical presentations of mutations in the IQSEC2 gene on the X-chromosome initially implicated to cause non-syndromic intellectual disability (ID) in males have expanded to include early onset seizures in males as well as in females. The molecular pathogenesis is not well understood, nor the mechanisms driving disease expression in heterozygous females. Using a CRISPR/Cas9-edited Iqsec2 KO mouse model, we confirm the loss of Iqsec2 mRNA expression and lack of Iqsec2 protein within the brain of both founder and progeny mice. Both male (52%) and female (46%) Iqsec2 KO mice present with frequent and recurrent seizures. Focusing on Iqsec2 KO heterozygous female mice, we demonstrate increased hyperactivity, altered anxiety and fear responses, decreased social interactions, delayed learning capacity and decreased memory retention/novel recognition, recapitulating psychiatric issues, autistic-like features, and cognitive deficits present in female patients with loss-of-function IQSEC2 variants. Despite Iqsec2 normally acting to activate Arf6 substrate, we demonstrate that mice modelling the loss of Iqsec2 function present with increased levels of activated Arf6. We contend that loss of Iqsec2 function leads to altered regulation of activated Arf6-mediated responses to synaptic signalling and immature synaptic networks. We highlight the importance of IQSEC2 function for females by reporting a novel nonsense variant c.566C > A, p.(S189*) in an elderly female patient with profound intellectual disability, generalised seizures, and behavioural disturbances. Our human and mouse data reaffirm IQSEC2 as another disease gene with an unexpected X-chromosome heterozygous female phenotype. Our Iqsec2 mouse model recapitulates the phenotypes observed in human patients despite the differences in the IQSEC2/Iqsec2 gene X-chromosome inactivation between the species.


ADP-Ribosylation Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Nerve Tissue Proteins/genetics , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/genetics , Aged , Animals , Autistic Disorder/genetics , Brain/metabolism , Disease Models, Animal , Female , Humans , Intellectual Disability/genetics , Loss of Heterozygosity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Mutation , Nerve Tissue Proteins/metabolism , Pedigree , Seizures/genetics
9.
Am J Med Genet A ; 179(8): 1483-1490, 2019 08.
Article En | MEDLINE | ID: mdl-31145546

Pathogenic variants in the X-chromosome Aristaless-related homeobox (ARX) gene contribute to intellectual disability, epilepsy, and associated comorbidities in affected males. Here, we report a novel splice variant in ARX in a family with three affected individuals. The proband had early onset developmental and epileptic encephalopathy, his brother and mother had severe and mild intellectual disability, respectively. Massively parallel sequencing identified a novel c.1449-1G>C in intron 4 of the ARX gene, predicted to abolish the splice acceptor site, retaining intron 4 and leading to a premature termination codon immediately after exon 4. As exon 5 is the last exon of the ARX gene, the premature termination codon at position p.L484* would be predicted to escape nonsense-mediated mRNA decay, potentially producing at least some C-terminally truncated protein. Analysis of cDNA from patient lymphoblastoid cells confirmed retention of intron 4 and loss of detectable expression of ARX mRNA across exon 4 to exon 5. We review published cases of variants that lead to altered or early termination of the ARX protein, but not complete loss of function, and are associated with phenotypes of intellectual disability and infantile onset developmental and epileptic encephalopathies, including Ohtahara and West syndromes. Taken together, this novel splice variant retaining intron 4 is likely to be the cause of the early onset developmental and epileptic encephalopathy in the proband.


Autism Spectrum Disorder/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Mutation , RNA Splicing , Spasms, Infantile/genetics , Transcription Factors/genetics , Adult , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/physiopathology , Base Sequence , Child , Child, Preschool , Exons , Family , Female , Gene Expression , High-Throughput Nucleotide Sequencing , Humans , Intellectual Disability/diagnosis , Intellectual Disability/physiopathology , Introns , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Pedigree , Spasms, Infantile/diagnosis , Spasms, Infantile/physiopathology , Transcription Factors/deficiency
10.
Hum Mutat ; 40(1): 5-24, 2019 01.
Article En | MEDLINE | ID: mdl-30328660

The IQSEC2- related disorders represent a spectrum of X-chromosome phenotypes with intellectual disability (ID) as the cardinal feature. Here, we review the increasing number of reported families and isolated cases have been reported with a variety of different pathogenic variants. The spectrum of clinical features is expanding with early-onset seizures as a frequent comorbidity in both affected male and female patients. There is a growing number of female patients with de novo loss-of-function variants in IQSEC2 have a more severe phenotype than the heterozygous state would predict, particularly if IQSEC2 is thought to escape X-inactivation. Interestingly, these findings highlight that the classical understanding of X-linked inheritance does not readily explain the emergence of these affected females, warranting further investigations into the underlying mechanisms.


Epilepsy/genetics , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Mutation/genetics , Female , Genetic Association Studies , Guanine Nucleotide Exchange Factors/chemistry , Humans , Phenotype
11.
PLoS One ; 13(11): e0206914, 2018.
Article En | MEDLINE | ID: mdl-30419043

Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in development. Here we identify that ARX protein is phosphorylated. Using mass spectrometry and in vitro kinase assays we identify phosphorylation at serines 37, 67 and 174. Through yeast-2-hybrid and CoIP we identified PICK1 (Protein interacting with C kinase 1) binding with the C-terminal region of ARX. PICK1 is a scaffold protein known to facilitate phosphorylation of protein partners by protein kinase C alpha (PRKCA). We confirm that ARX is phosphorylated by PRKCA and demonstrate phosphorylation at serine 174. We demonstrate that phosphorylation is required for correct transcriptional activity of the ARX protein using transcriptome-wide analysis of gene expression of phospho-null mutants (alanines replacing serines) compared to ARX wild-type (ARX-WT) overexpressed in pancreatic alpha TC cells. Compared to untransfected cells, ARX-WT overexpression significantly altered expression of 70 genes (Log2FC >+/-1.0, P-value <0.05). There were fewer genes with significantly altered expression compared to untransfected cells with the double phospho-null mutant Ser37Ala+Ser67Ala (26%) and Ser174Ala (39%), respectively. We demonstrate that the c-terminal region of ARX required to bind PICK1 causes a shift in PICK1 subcellular localisation to the nucleus to co-locate with the ARX protein, and truncation of this C-terminal region leads to the same loss of transcriptional activation as S174A mutant. In conclusion, we show that ARX is phosphorylated at several sites and that this modification affects its transcriptional activity.


Carrier Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Homeodomain Proteins/metabolism , Nuclear Proteins/metabolism , Phosphorylation/physiology , Protein Kinase C-alpha/metabolism , Transcription Factors/metabolism , Animals , Cell Nucleus/metabolism , Gene Expression Profiling , Glucagon-Secreting Cells , HEK293 Cells , Homeodomain Proteins/genetics , Humans , Mice , Mutation , Serine/metabolism , Transcription Factors/genetics
12.
Child Neurol Open ; 4: 2329048X17738625, 2017.
Article En | MEDLINE | ID: mdl-29152528

X-linked lissencephaly with abnormal genitalia is a rare and devastating syndrome. The authors present an infant with a multisystem phenotype where the intestinal manifestations were as life limiting as the central nervous system features. Severe chronic diarrhea resulted in failure to thrive, dehydration, electrolyte derangements, long-term hospitalization, and prompted transition to palliative care. Other multisystem manifestations included megacolon, colitis, pancreatic insufficiency hypothalamic dysfunction, hypothyroidism, and hypophosphatasia. A novel aristaless-related homeobox gene mutation, c.1136G>T/p.R379L, was identified. This case contributes to the clinical, histological, and molecular understanding of the multisystem nature of this disorder, especially the role of ARX in the development of the enteroendocrine system.

13.
Neurobiol Dis ; 105: 245-256, 2017 Sep.
Article En | MEDLINE | ID: mdl-28602636

The Aristaless-related homeobox gene (ARX) is a known intellectual disability (ID) gene that frequently presents with X-linked infantile spasm syndrome as a comorbidity. ID with epilepsy in children is a chronic and devastating disorder that has poor treatment options and disease outcomes. To gain a better understanding of the role that mutations in ARX play in ID and epilepsy, we investigate ARX patient mutations modelled in mice. Over half of all ARX mutations result from expansions of the first two polyalanine (PA1 and PA2 respectively) tracts. However, phenotypic data for the mouse modelling the more frequent ARX PA2 dup24 mutation in patients has not been reported and constitutes a barrier to understanding the molecular mechanisms involved. Here we report the first comprehensive analysis of postnatal outcomes for mice modelling disease-causing expansions to both PA1 and PA2 tracts. Both strains were found to have impaired learning and memory, reduced activity, increased anxiety and reduced sociability; with PA1 mice generally displaying greater behavioural deficits in keeping with the more severe phenotype reported in patients. In agreement with previous reports, 70% of PA1 males exhibit myoclonic seizures by two months of age, with the first observed at P18. In this report, we show 80% of PA2 males also display myoclonic seizures, with the first observed at P19. Consistent with patient phenotypes, we observe large variations in seizure progression and severity for both PA1 and PA2 individual mice. The generation of this comprehensive baseline data is a necessary step on the path to the development of therapies to improve patient outcomes.


Epilepsy/genetics , Epilepsy/physiopathology , Homeodomain Proteins/metabolism , Intellectual Disability/genetics , Intellectual Disability/physiopathology , Peptides/genetics , Transcription Factors/metabolism , Age Factors , Animals , Disease Models, Animal , Electroencephalography , Female , Functional Laterality , Genotype , Homeodomain Proteins/genetics , Male , Mental Disorders/etiology , Mental Disorders/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Social Behavior , Statistics, Nonparametric , Transcription Factors/genetics , Video Recording
14.
Eur J Hum Genet ; 25(6): 763-767, 2017 06.
Article En | MEDLINE | ID: mdl-28295038

We report a family with four girls with moderate to severe intellectual disability and epilepsy. Two girls showed regression in adolescence and died of presumed sudden unexpected death in epilepsy at 16 and 22 years. Whole exome sequencing identified a truncating pathogenic variant in IQSEC2 at NM_001111125.2: c.2679_2680insA, p.(D894fs*10), a recently identified cause of epileptic encephalopathy in females (MIM 300522). The IQSEC2 variant was identified in both surviving affected sisters but in neither parent. We describe the phenotypic spectrum associated with IQSEC2 variants, highlighting how IQSEC2 is adding to a growing list of X-linked genes that have a female-specific phenotype typically associated with de novo mutations. This report illustrates the need for careful review of all whole exome data, incorporating all possible modes of inheritance including that suggested by the family history.


Epilepsy/genetics , Germ-Line Mutation , Guanine Nucleotide Exchange Factors/genetics , Intellectual Disability/genetics , Mosaicism , Child , Child, Preschool , Epilepsy/diagnosis , Exome , Female , Humans , Intellectual Disability/diagnosis , Pedigree , Syndrome
15.
Hum Mutat ; 38(5): 548-555, 2017 05.
Article En | MEDLINE | ID: mdl-28150386

The devastating clinical presentation of X-linked lissencephaly with abnormal genitalia (XLAG) is invariably caused by loss-of-function mutations in the Aristaless-related homeobox (ARX) gene. Mutations in this X-chromosome gene contribute to intellectual disability (ID) with co-morbidities including seizures and movement disorders such as dystonia in affected males. The detection of affected females with mutations in ARX is increasing. We present a family with multiple affected individuals, including two females. Two male siblings presenting with XLAG were deceased prior to full-term gestation or within the first few weeks of life. Of the two female siblings, one presented with behavioral disturbances, mild ID, a seizure disorder, and complete agenesis of the corpus callosum (ACC), similar to the mother's phenotype. A novel insertion mutation in Exon 2 of ARX was identified, c.982delCinsTTT predicted to cause a frameshift at p.(Q328Ffs* 37). Our finding is consistent with loss-of-function mutations in ARX causing XLAG in hemizygous males and extends the findings of ID and seizures in heterozygous females. We review the reported phenotypes of females with mutations in ARX and highlight the importance of screening ARX in male and female patients with ID, seizures, and in particular with complete ACC.


Genetic Association Studies , Homeodomain Proteins/genetics , Mutation , Phenotype , Transcription Factors/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Brain/pathology , Child , Child, Preschool , DNA Mutational Analysis , Exons , Female , Genes, X-Linked , Homeodomain Proteins/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pedigree , Transcription Factors/metabolism
16.
BMC Genomics ; 18(1): 10, 2017 01 03.
Article En | MEDLINE | ID: mdl-28049421

BACKGROUND: Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organisation of the placental transcriptome through a systematic analysis of gene-wise co-expression relationships. RESULTS: In this study, we performed a comprehensive analysis of human placental co-expression using RNA sequencing and intergrated multiple transcriptome datasets spanning human gestation. We identified modules of co-expressed genes that are preserved across human gestation, and also identifed modules conserved in the mouse indicating conserved molecular networks involved in placental development and gene expression patterns more specific to late gestation. Analysis of co-expressed gene flanking sequences indicated that conserved co-expression modules in the placenta are regulated by a core set of transcription factors, including ZNF423 and EBF1. Additionally, we identified a gene co-expression module enriched for genes implicated in the pregnancy pathology preeclampsia. By using an independnet transcriptome dataset, we show that these co-expressed genes are differentially expressed in preeclampsia. CONCLUSIONS: This study represents a comprehensive characterisation of placental co-expression and provides insight into potential transcriptional regulators that govern conserved molecular programs fundamental to placental development.


Gene Expression Profiling , Gene Expression Regulation , Placenta/metabolism , Transcriptome , Animals , Binding Sites , Cluster Analysis , Epigenesis, Genetic , Evolution, Molecular , Female , Gene Regulatory Networks , Gestational Age , Humans , Mice , Pregnancy , Protein Binding , Transcription Factors/metabolism
17.
Hum Mol Genet ; 25(24): 5433-5443, 2016 12 15.
Article En | MEDLINE | ID: mdl-27798109

The Aristaless-related homeobox (ARX) gene encodes a paired-type homeodomain transcription factor with critical roles in embryonic development. Mutations in ARX give rise to intellectual disability (ID), epilepsy and brain malformation syndromes. To capture the genetics and molecular disruptions that underpin the ARX-associated clinical phenotypes, we undertook a transcriptome wide RNASeq approach to analyse developing (12.5 dpc) telencephalon of mice modelling two recurrent polyalanine expansion mutations with different phenotypic severities in the ARX gene. Here we report 238 genes significantly deregulated (Log2FC > +/-1.1, P-value <0.05) when both mutations are compared to wild-type (WT) animals. When each mutation is considered separately, a greater number of genes were deregulated in the severe PA1 mice (825) than in the PA2 animals (78). Analysing genes deregulated in either or both mutant strains, we identified 12% as implicated in ID, epilepsy and autism (99/858), with ∼5% of them as putative or known direct targets of ARX transcriptional regulation. We propose a core pathway of transcription regulators, including Hdac4, involved in chromatin condensation and transcriptional repression, and one of its targets, the transcription factor Twist1, as potential drivers of the ID and infantile spasms in patients with ARX polyalanine expansion mutations. We predict that the subsequent disturbance to this pathway is a consequence of ARX protein reduction with a broader and more significant level of disruption in the PA1 in comparison to the PA2 mice. Identifying early triggers of ARX-associated phenotypes contributes to our understanding of particular clusters/pathways underpinning comorbid phenotypes that are shared by many neurodevelopmental disorders.


Epilepsy/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Peptides/genetics , Transcription Factors/genetics , Transcriptome/genetics , Animals , Disease Models, Animal , Epilepsy/pathology , Gene Expression Regulation, Developmental , Histone Deacetylases/genetics , Humans , Intellectual Disability/pathology , Mice , Mutation , Phenotype , Prosencephalon/embryology , Prosencephalon/metabolism , Protein Biosynthesis/genetics , Signal Transduction , Telencephalon/embryology , Telencephalon/metabolism
18.
Front Genet ; 7: 183, 2016.
Article En | MEDLINE | ID: mdl-27790248

The severity and prevalence of many diseases are known to differ between the sexes. Organ specific sex-biased gene expression may underpin these and other sexually dimorphic traits. To further our understanding of sex differences in transcriptional regulation, we performed meta-analyses of sex biased gene expression in multiple human tissues. We analyzed 22 publicly available human gene expression microarray data sets including over 2500 samples from 15 different tissues and 9 different organs. Briefly, by using an inverse-variance method we determined the effect size difference of gene expression between males and females. We found the greatest sex differences in gene expression in the brain, specifically in the anterior cingulate cortex, (1818 genes), followed by the heart (375 genes), kidney (224 genes), colon (218 genes), and thyroid (163 genes). More interestingly, we found different parts of the brain with varying numbers and identity of sex-biased genes, indicating that specific cortical regions may influence sexually dimorphic traits. The majority of sex-biased genes in other tissues such as the bladder, liver, lungs, and pancreas were on the sex chromosomes or involved in sex hormone production. On average in each tissue, 32% of autosomal genes that were expressed in a sex-biased fashion contained androgen or estrogen hormone response elements. Interestingly, across all tissues, we found approximately two-thirds of autosomal genes that were sex-biased were not under direct influence of sex hormones. To our knowledge this is the largest analysis of sex-biased gene expression in human tissues to date. We identified many sex-biased genes that were not under the direct influence of sex chromosome genes or sex hormones. These may provide targets for future development of sex-specific treatments for diseases.

19.
Epilepsia ; 57(11): 1858-1869, 2016 11.
Article En | MEDLINE | ID: mdl-27665735

OBJECTIVE: IQSEC2 is an X-linked gene associated with intellectual disability (ID) and epilepsy. Herein we characterize the epilepsy/epileptic encephalopathy of patients with IQSEC2 pathogenic variants. METHODS: Forty-eight patients with IQSEC2 variants were identified worldwide through Medline search. Two patients were recruited from our early onset epileptic encephalopathy cohort and one patient from personal communication. The 18 patients who have epilepsy in addition to ID are the subject of this study. Information regarding the 18 patients was ascertained by questionnaire provided to the treating clinicians. RESULTS: Six affected individuals had an inherited IQSEC2 variant and 12 had a de novo one (male-to-female ratio, 12:6). The pathogenic variant types were as follows: missense (8), nonsense (5), frameshift (1), intragenic duplications (2), translocation (1), and insertion (1). An epileptic encephalopathy was diagnosed in 9 (50%) of 18 patients. Seizure onset ranged from 8 months to 4 years; seizure types included spasms, atonic, myoclonic, tonic, absence, focal seizures, and generalized tonic-clonic (GTC) seizures. The electroclinical syndromes could be defined in five patients: late-onset epileptic spasms (three) and Lennox-Gastaut or Lennox-Gastaut-like syndrome (two). Seizures were pharmacoresistant in all affected individuals with epileptic encephalopathy. The epilepsy in the other nine patients had a variable age at onset from infancy to 18 years; seizure types included GTC and absence seizures in the hereditary cases and GTC and focal seizures in de novo cases. Seizures were responsive to medical treatment in most cases. All 18 patients had moderate to profound intellectual disability. Developmental regression, autistic features, hypotonia, strabismus, and white matter changes on brain magnetic resonance imaging (MRI) were prominent features. SIGNIFICANCE: The phenotypic spectrum of IQSEC2 disorders includes epilepsy and epileptic encephalopathy. Epileptic encephalopathy is a main clinical feature in sporadic cases. IQSEC2 should be evaluated in both male and female patients with an epileptic encephalopathy.


Epilepsy/genetics , Epilepsy/physiopathology , Guanine Nucleotide Exchange Factors/genetics , Mutation/genetics , Adolescent , Adult , Brain/diagnostic imaging , Child , Child, Preschool , Cohort Studies , Electroencephalography , Epilepsy/diagnostic imaging , Female , Genetic Association Studies , Humans , Magnetic Resonance Imaging , Male , Phenotype , Young Adult
20.
Eur J Hum Genet ; 24(5): 681-9, 2016 May.
Article En | MEDLINE | ID: mdl-26306640

Mutations in the Aristaless-related homeobox gene (ARX) lead to a range of X-linked intellectual disability phenotypes, with truncating variants generally resulting in severe X-linked lissencephaly with ambiguous genitalia (XLAG), and polyalanine expansions and missense variants resulting in infantile spasms. We report two male patients with early-onset infantile spasms in whom a novel c.34G>T (p.(E12*)) variant was identified in the ARX gene. A similar variant c.81C>G (p.(Y27*)), has previously been described in two affected cousins with early-onset infantile spasms, leading to reinitiation of ARX mRNA translation resulting in an N-terminal truncated protein. We show that the novel c.34G>T (p.(E12*)) variant also reinitiated mRNA translation at the next AUG codon (c.121-123 (p.M41)), producing the same N-terminally truncated protein. The production of both of these truncated proteins was demonstrated to be at markedly reduced levels using in vitro cell assays. Using luciferase reporter assays, we demonstrate that transcriptional repression capacity of ARX was diminished by both the loss of the N-terminal corepressor octapeptide domain, as a consequence of truncation, and the marked reduction in mutant protein expression. Our study indicates that premature termination mutations very early in ARX lead to reinitiation of translation to produce N-terminally truncated protein at markedly reduced levels of expression. We conclude that even low levels of N-terminally truncated ARX is sufficient to improve the patient's phenotype compared with the severe phenotype of XLAG that includes malformations of the brain and genitalia normally seen in complete loss-of-function mutations in ARX.


Genetic Diseases, X-Linked/genetics , Homeodomain Proteins/genetics , Mutation , RNA, Messenger/genetics , Spasms, Infantile/genetics , Transcription Factors/genetics , Codon, Initiator , Genetic Diseases, X-Linked/diagnosis , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Infant , Male , Peptide Chain Initiation, Translational , RNA, Messenger/metabolism , Siblings , Spasms, Infantile/diagnosis , Transcription Factors/metabolism
...