Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Oral Health ; 24(1): 365, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515110

RESUMEN

BACKGROUND: Treating white spot lesions (WSLs) with resin infiltration alone may not be sufficient, raising questions about its compatibility with other treatments amid controversial or incomplete data. Therefore, this study aimed to assess the aesthetic feasibility of resin infiltration combined with bleaching, as well as its potential mechanical effect on ceramic bonding to WSLs. METHODS: One hundred and fifty flat enamel surfaces of bovine incisors were prepared. Ninety specimens were deminerailized and randomly assigned to three groups(n = 30): post-bleaching resin infiltration (Bl-R), pre-bleaching resin infiltration (R-Bl), and only resin infiltration (R). Color, surface roughness and microhardness were assessed in immediate, thermocycling and pigmentation tests. The remaining sixty samples were randomly assigned to three groups (n = 20): control (Ctrl), bonding (Bo), pre-bonding resin infiltration (R-Bo). Shear bonding strength, failure mode, micro-leakage depth and interface morphology were evaluated after ceramic bonding. The Tukey test and analysis of variance (ANOVA) were used for statistical analysis. RESULTS: For the effect of resin infiltration and bleaching on WSLs, the R-Bl group showed the worst chromic masking ability, with the highest |ΔL|, |Δa|, |Δb|, and ΔE values after treatment. Compared with those in the Bl-R group, the R-Bl and R groups showed significant time-dependent staining, which is possibly attributed to their surface roughness. For the effect of resin infiltration on the adhesive properties of WSLs, resin infiltration reduced the staining penetration depth of WSLs from 2393.54 ± 1118.86 µm to 188.46 ± 89.96 µm (P < 0.05) while reducing WSLs porosity in SEM observation. CONCLUSIONS: Post-bleaching resin infiltration proved to be advantageous in the aesthetic treatment of WSLs. Resin infiltration did not compromise bonding strength but it did reduce microleakage and enhance marginal sealing. Overall, resin infiltration can effectively enhance the chromatic results of treated WSLs and prevent long-term bonding failure between ceramics and enamel. Based on these findings, the use of post-bleaching resin infiltration is recommended, and resin infiltration before ceramic bonding is deemed viable in clinical practice.


Asunto(s)
Caries Dental , Resinas Sintéticas , Humanos , Animales , Bovinos , Resinas Sintéticas/uso terapéutico , Caries Dental/terapia , Estética Dental , Esmalte Dental , Cerámica
2.
Int Immunopharmacol ; 116: 109796, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36731157

RESUMEN

Macrophages are highly implicated in the progression of periodontitis, while circadian rhythm disruption (CRD) promotes the inflammatory response of macrophages in many diseases. However, the effects of CRD on periodontitis and the role of macrophages in this process remain unclear. Histone lysinedemethylase6a (Kdm6a), a histone demethylase, has recently been identified as a key regulator of macrophage-induced inflammation. Here, we established an experimental periodontitis model by injecting lipopolysaccharide (LPS) derived from Porphyromonas gingivalis with or without periodontal ligation in mice exposed to an 8-h time shift jet-lag schedule every 3 days. By histomorphometry, tartrate acid phosphatase (TRAP) staining, RT-qPCR, ELISA, immunohistochemistry and immunofluorescence analysis, we found that CRD promoted the inflammatory response, alveolar bone resorption, macrophage infiltration and Kdm6a expression in macrophages. Macrophage-specific Kdm6a knockout mice were further used to elucidate the effects of Kdm6a deficiency on periodontitis. Kdm6a deletion in macrophages rescued periodontal tissue inflammation, osteoclastogenesis, and alveolar bone loss in a mouse model of periodontitis. These findings suggest that CRD may intensify periodontitis by increasing the infiltration and activation of macrophages. Kdm6a promotes the inflammatory response in macrophages, which may participate in aggravated periodontitis via CRD.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , Pérdida de Hueso Alveolar/metabolismo , Macrófagos , Periodontitis/metabolismo , Inflamación/metabolismo , Histona Demetilasas/metabolismo , Porphyromonas gingivalis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...