Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Geochem Health ; 46(2): 31, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227052

RESUMEN

Laboratory determination of trihalomethanes (THMs) is a very time-consuming task. Therefore, establishing a THMs model using easily obtainable water quality parameters would be very helpful. This study explored the modeling methods of the random forest regression (RFR) model, support vector regression (SVR) model, and Log-linear regression model to predict the concentration of total-trihalomethanes (T-THMs), bromodichloromethane (BDCM), and dibromochloromethane (DBCM), using nine water quality parameters as input variables. The models were developed and tested using a dataset of 175 samples collected from a water treatment plant. The results showed that the RFR model, with the optimal parameter combination, outperformed the Log-linear regression model in predicting the concentration of T-THMs (N25 = 82-88%, rp = 0.70-0.80), while the SVR model performed slightly better than the RFR model in predicting the concentration of BDCM (N25 = 85-98%, rp = 0.70-0.97). The RFR model exhibited superior performance compared to the other two models in predicting the concentration of T-THMs and DBCM. The study concludes that the RFR model is superior overall to the SVR model and Log-linear regression models and could be used to monitor THMs concentration in water supply systems.


Asunto(s)
Calidad del Agua , Abastecimiento de Agua , Modelos Lineales , Aprendizaje Automático , Trihalometanos
2.
Nat Commun ; 15(1): 128, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167856

RESUMEN

The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments.


Asunto(s)
Fertilizantes , Residuos , Animales , Fertilizantes/análisis , Leche/química , Agricultura/métodos , Suelo
3.
Sci Total Environ ; 838(Pt 3): 156217, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623523

RESUMEN

Antimony (Sb) is a typical pollutant in sulfate-rich industrial wastewater. This study investigated the Sb removal efficiency in sulfate-rich water by anaerobic granular sludge (AnGS) and the stimulation of amended anthraquinone-2-sulfonate (AQS). Results showed that 89.0% of 5 mg/L Sb(V) was reduced by AnGS within 24 h, along with the observed first accumulation (up to 552.2 µg/L) and then precipitation of Sb(Ш); coexistence of 2 g/L sulfate inhibited the removal of Sb(V) by 71.4% within 24 h, along with gradual accumulation of Sb(Ш) by 3257.4 µg/L, indicating the potential competition of adsorption sites and electron donors between Sb(V) and sulfate. Amendment of 31 mg/L AQS successfully removed the inhibition from sulfate, contributing to 99.5% Sb(V) removal and minimum Sb(Ш) accumulation in Sb(V) + sulfate+AQS group. Further test results suggested that Sb(V) removal by AnGS was mainly through dissimilatory reduction instead of bio-sorption, while Sb(Ш) removal mainly relied on instant bio-sorption by AnGS followed by precipitation in the form of Sb2O3 and Sb2S3. Extracellular Polymeric Substances (EPS) characterization showed that AQS promoted the accumulation of Sb(V) and Sb(Ш) in EPS. High-throughput sequencing analysis showed the enrichment of sulfate-reducing bacteria (SRB) in Sb(V) + sulfate group and suppressed SRB growth in Sb(V) + sulfate+AQS group.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Anaerobiosis , Quinonas , Sulfatos , Óxidos de Azufre
4.
Sci Total Environ ; 821: 153221, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35063517

RESUMEN

Disinfection byproduct (DBP) formation is a potential concern with regard to MPUV/Cl2 application in water treatment. In this study, five typical amino acids (AAs) were selected to investigate their DBP alteration during short-term medium pressure (MP) UV/chlorine oxidation following post-chlorination relative to parallel dark controls. The five selected AAs include two potent DBP precursors (aspartic acid and tryptophan), one modest precursor (asparagine) and two poor precursors (phenylalanine and proline). MPUV/chlorine increased the total DBP formation and DBP-associated cytotoxicity of the two poor precursors phenylalanine (Phe) and proline (Pro) as well as their chlorine demands. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent DBP precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. The two aromatic AAs (tryptophan and phenylalanine) were more readily to be affected by MPUV/Cl2 oxidation especially at acidic pH condition. Conversely, DBP formation and DBP-associated cytotoxicity of the three modest-to-potent precursors showed the opposite changing trends due to MPUV/Cl2 oxidation. Among the measured DBPs, the absolute formation potential changes of haloacetic acids and haloacetonitriles were the most prominent. Presence of bromide increased the trihalomethane formation potential of five AAs. Ammonia-spiked samples resulted in notably higher chlorine demands but slightly reduced DBPFP. Photonitration caused increased haloacetonitrile and trichloronitromethane formation but lower overall DBP formation potential and DBP-associated cytotoxicity. Results indicated that increased DBP formation of unreactive aromatic AAs may be problematic with respect to MPUV/Cl2 application, while the presence of inorganic ions may not contribute to further increase in calculated cytotoxicity of measured DBPs.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Aminoácidos , Amoníaco , Bromuros , Cloro/química , Desinfección , Halogenación , Nitratos , Contaminantes Químicos del Agua/análisis
5.
J Hazard Mater ; 410: 124643, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33257125

RESUMEN

Fe-C micro-electrolysis system has been widely used in filters, or as an advanced treatment process in some water treatment plants to treat various wastewater. In this study, Fe-C micro-electrolysis process was enhanced by an economical and environmentally friendly method, applied magnetic field. Batch kinetic experiments and scanning electron micrographs demonstrated a more effective micro-electrolysis and more severely corroded on the surface of Fe-C after applying a magnetic field at pH 3.0. An applied magnetic field reduced the charge-transfer resistance and increased the current density in micro-electrolysis system and Fe-C became more prone to electrochemical corrosion. Corrosion products were proved to be Fe2+, Fe3O4, and C-O, moreover, the formation of them were also increased in the presence of a magnetic field. Base on that, some influential factors like magnetic field flux intensity, Fe-C particle size, pH, Fe-C dosage and its reusability were investigated in this paper. Since Fe2+ release was accelerated in micro-electrolysis system by an applied magnetic field, combination of various advanced oxidation processes were designed to explore the application effectiveness of the system. The degradation rate of target contaminant was significantly improved in the presence of a magnetic field, suggesting it could be a reliable method for wastewater treatment.

6.
Sci Total Environ ; 752: 141837, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32889273

RESUMEN

As a new type of potentially threatening pollutant, microplastics are widely distributed in water and may come into contact with the humans through tap water. The removal behaviors of microplastics in water treatment plants coagulation are not completely clear. In this paper, the removal performance and mechanism of polystyrene (PS) and polyethylene (PE) microplastics using PAC and FeCl3 coagulation were studied. Results showed that PAC was better than FeCl3 in removal efficiency of PS and PE microplastics. Charge neutralization occurred in the coagulation process. The figures of scanning electron microscope (SEM) illustrate that agglomeration adsorption occurred in PS system, and the Fourier transform infrared spectroscope (FTIR) spectra demonstrates that new bonds were formed during the interaction between PS microplastics and coagulants. In addition, the hydrolysis products of coagulants played a major role rather than the hydrolysis process in both PS system and PE system. The removal efficiency of microplastics in alkaline conditions was higher than that in acidic conditions. Cl- had little effect on the removal efficiency of microplastics, while SO42- and CO32- had inhibitory and promoting effects respectively. The increase of stirring speed could improve the removal efficiency of microplastics. This paper can provide a reference for the study of microplastics treated by coagulation.

7.
Water Res ; 185: 116099, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739696

RESUMEN

In addition to surface water and groundwater, rainwater is used as an important drinking water source in many parts of the world, especially in areas with serious water pollution or insufficient water resources. Conventional drinking water treatment technologies can remove dissolved organic matter and therefore reduce the formation of disinfection by-products (DBPs) during subsequent disinfection using surface water or groundwater as drinking water sources. However, little information has been known about the effect of conventional water treatment processes on DBP formation when rainwater is used as drinking water source. This study evaluated CX3R-type DBP precursors removal from rainwater by conventional drinking water treatments and the corresponding decrease of CX3R-type DBP (trihalomethanes (THMs), haloaldehydes (HALs), haloacetonitriles (HANs) and haloacetamides (HAMs)) formation and toxicity during the subsequent chlor(am)ination. The result showed that both sand filtration (SF) and activated carbon filtration (GAC) were able to remove DBP precursors and GAC outperformed SF, but no DBP precursors removal was observed during coagulation-sedimentation treatment. Among all treatments, SF + GAC was the most effective for DBP precursors removal, with removal efficiencies of 64.2% DOC, 98% DON and 76.6% UV254. Correspondingly, both SF and GAC decreased the formation of THMs, HALs, HANs and HAMs, and GAC performed better than SF. The combination of SF and GAC, especially SF + GAC, greatly decreased DBP formation, with average reduction of 79.2% and 85% during chlorination and chloramination respectively. After different treatments, the comprehensive toxicity risk of CX3R-type DBPs was all reduced, among which GAC + SF exhibited superior performance. Generally, the main contribution of integrated toxicity was HANs during chlor(am)ination. The formation potential of THMs, HALs, HANs and HAMs and the corresponding integrated toxicity were greater during chlorination than that during chloramination. Therefore, the combination of GAC and chloramination was promising in mitigating the comprehensive toxicity risk of THMs, HALs, HANs and HAMs for rainwater.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Desinfectantes/análisis , Desinfección , Halogenación , Trihalometanos , Contaminantes Químicos del Agua/análisis
8.
J Hazard Mater ; 344: 1209-1219, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29174048

RESUMEN

The ability of persulfate (PS) and peroxymonosulfate (PMS) activated by micron or nanoscale zero-valent copper (ZVC or nZVC) to degrade 2,4-dichlorophenol (2,4-DCP) was quantified under various conditions. Mechanism investigation revealed that PS and PMS accelerated the corrosion of ZVC or nZVC to release Cu+ under acidic conditions. The in-situ generated Cu+ further decomposed PS or PMS to produce SO4- and OH, which then dramatically degraded 2,4-DCP. The kobs for 2,4-DCP removal followed pseudo-first-order kinetics, kobs of ZVC/PMS and nZVC/PMS systems were 10∼30 times greater than these in ZVC/PS and nZVC/PS systems. The nZVC/PMS system was most effective to remove 2,4-DCP which even did better than the nZVI/PMS system, with rate constant values ranging from 0.041 to 1.855min-1. At higher pH ZVC is ineffective, but nZVC can activate PS and PMS to significantly degrade 2,4-DCP at pH up to 7.3. The 2,4-DCP degradation pathway was found to involve dechloridation, dehydrogenation, hydroxylation, ring open and mineralization. 56.7% and 45.3% of TOC removals were respectively obtained in the ZVC/PMS and nZVC/PMS systems within 120min. This study helps to comprehend the application of zero-valent metals in reactive radicals-based oxidation processes and the reactivity of Cu+ as an activator of PS and PMS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...