Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 30(11): 1816-1825, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37957305

RESUMEN

A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. Start codon-associated ribosomal frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra that are unannotated in the human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational 'noise' in nutrient stress adaptation.


Asunto(s)
Sistema de Lectura Ribosómico , Proteínas de Saccharomyces cerevisiae , Humanos , Codón Iniciador/genética , Codón Iniciador/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/genética , Aminoácidos/metabolismo , Biosíntesis de Proteínas
2.
bioRxiv ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36824937

RESUMEN

A translating ribosome is typically thought to follow the reading frame defined by the selected start codon. Using super-resolution ribosome profiling, here we report pervasive out-of-frame translation immediately from the start codon. The start codon-associated ribosome frameshifting (SCARF) stems from the slippage of ribosomes during the transition from initiation to elongation. Using a massively paralleled reporter assay, we uncovered sequence elements acting as SCARF enhancers or repressors, implying that start codon recognition is coupled with reading frame fidelity. This finding explains thousands of mass spectrometry spectra unannotated from human proteome. Mechanistically, we find that the eukaryotic initiation factor 5B (eIF5B) maintains the reading frame fidelity by stabilizing initiating ribosomes. Intriguingly, amino acid starvation induces SCARF by proteasomal degradation of eIF5B. The stress-induced SCARF protects cells from starvation by enabling amino acid recycling and selective mRNA translation. Our findings illustrate a beneficial effect of translational "noise" in nutrient stress adaptation.

3.
Nat Chem Biol ; 18(2): 134-141, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34887587

RESUMEN

In eukaryotic cells, many messenger RNAs (mRNAs) possess upstream open reading frames (uORFs) in addition to the main coding region. After uORF translation, the ribosome could either recycle at the stop codon or resume scanning for downstream start codons in a process known as reinitiation. Accumulating evidence suggests that some initiation factors, including eukaryotic initiation factor 3 (eIF3), linger on the early elongating ribosome, forming an eIF3-80S complex. Very little is known about how eIF3 is carried along with the 80S during elongation and whether the eIF3-80S association is subject to regulation. Here, we report that eIF3a undergoes dynamic O-linked N-acetylglucosamine (O-GlcNAc) modification in response to nutrient starvation. Stress-induced de-O-GlcNAcylation promotes eIF3 retention on the elongating ribosome and facilitates activating transcription factor 4 (ATF4) reinitiation. Eliminating the modification site from eIF3a via CRISPR genome editing induces ATF4 reinitiation even under the nutrient-rich condition. Our findings illustrate a mechanism in balancing ribosome recycling and reinitiation, thereby linking the nutrient stress response and translational reprogramming.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Regulación de la Expresión Génica/fisiología , Proliferación Celular , Codón de Terminación , Medios de Cultivo/química , ADN Complementario , Factor 3 de Iniciación Eucariótica/genética , Células HEK293 , Células HeLa , Humanos , Iniciación de la Cadena Peptídica Traduccional , Estrés Fisiológico
4.
Mol Cell ; 81(20): 4191-4208.e8, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686314

RESUMEN

To survive, mammalian cells must adapt to environmental challenges. While the cellular response to mild stress has been widely studied, how cells respond to severe stress remains unclear. We show here that under severe hyperosmotic stress, cells enter a transient hibernation-like state in anticipation of recovery. We demonstrate this adaptive pausing response (APR) is a coordinated cellular response that limits ATP supply and consumption through mitochondrial fragmentation and widespread pausing of mRNA translation. This pausing is accomplished by ribosome stalling at translation initiation codons, which keeps mRNAs poised to resume translation upon recovery. We further show that recovery from severe stress involves ISR (integrated stress response) signaling that permits cell cycle progression, resumption of growth, and reversal of mitochondria fragmentation. Our findings indicate that cells can respond to severe stress via a hibernation-like mechanism that preserves vital elements of cellular function under harsh environmental conditions.


Asunto(s)
Proliferación Celular , Fibroblastos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Presión Osmótica , Biosíntesis de Proteínas , Ribosomas/metabolismo , Adaptación Fisiológica , Adenosina Trifosfato/metabolismo , Animales , Codón Iniciador , Fibroblastos/patología , Células HEK293 , Humanos , Cinética , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Ribosomas/genética , Transducción de Señal
5.
Annu Rev Nutr ; 40: 51-75, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32631146

RESUMEN

The emergence of genome-wide analyses to interrogate cellular DNA, RNA, and protein content has revolutionized the study of control networks that mediate cellular homeostasis. mRNA translation represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are orchestrated by nutrient signaling pathways. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during nutrient stress by translation of selective mRNAs. In this review, we describe recent advances in our understanding of translational control principles; nutrient-sensing mechanisms; and their dysregulation in human diseases such as diabetes, cancer, and aging. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Nutrientes/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética
6.
Nat Chem Biol ; 14(10): 909-916, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30127386

RESUMEN

Heat shock response (HSR) is an ancient signaling pathway leading to thermoprotection of nearly all living organisms. Emerging evidence suggests that intracellular O-linked ß-N-acetylglucosamine (O-GlcNAc) serves as a molecular 'thermometer' by reporting ambient temperature fluctuations. Whether and how O-GlcNAc modification regulates HSR remains unclear. Here we report that, upon heat shock stress, the key translation initiation factor eIF4GI undergoes dynamic O-GlcNAcylation at the N-terminal region. Without O-GlcNAc modification, the preferential translation of stress mRNAs is impaired. Unexpectedly, stress mRNAs are entrapped within stress granules (SGs) that are no longer dissolved during stress recovery. Mechanistically, we show that stress-induced eIF4GI O-GlcNAcylation repels poly(A)-binding protein 1 and promotes SG disassembly, thereby licensing stress mRNAs for selective translation. Using various eIF4GI mutants created by CRISPR/Cas9, we demonstrate that eIF4GI acts as a translational switch via reversible O-GlcNAcylation. Our study reveals a central mechanism linking heat stress sensing, protein remodeling, SG dynamics and translational reprogramming.


Asunto(s)
Acetilglucosamina/química , Factor 4G Eucariótico de Iniciación/química , Respuesta al Choque Térmico , N-Acetilglucosaminiltransferasas/química , Procesamiento Proteico-Postraduccional , Animales , Sistemas CRISPR-Cas , Citoplasma , Fibroblastos/metabolismo , Glicosilación , Proteínas HSP70 de Choque Térmico/química , Humanos , Hibridación Fluorescente in Situ , Ratones , Dominios Proteicos , Proteínas , Transducción de Señal , Estrés Mecánico , Temperatura
7.
Mol Cell ; 69(4): 636-647.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429926

RESUMEN

The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.


Asunto(s)
Adenosina/análogos & derivados , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/fisiología , Factor 2 Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , ARN Mensajero/genética , Ribosomas/fisiología , Estrés Fisiológico , Regiones no Traducidas 5' , Adenosina/farmacología , Animales , Células Cultivadas , Codón Iniciador , Factor 2 Eucariótico de Iniciación/genética , Fibroblastos , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , Fosforilación , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...