Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Blood Adv ; 7(21): 6553-6566, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37611161

RESUMEN

The adenosine triphosphate (ATP)-dependent chromatin remodeling complex, SWItch/Sucrose Non-Fermentable (SWI/SNF), has been implicated in normal hematopoiesis. The AT-rich interaction domain 1B (ARID1B) and its paralog, ARID1A, are mutually exclusive, DNA-interacting subunits of the BRG1/BRM-associated factor (BAF) subclass of SWI/SNF complex. Although the role of several SWI/SNF components in hematopoietic differentiation and stem cell maintenance has been reported, the function of ARID1B in hematopoietic development has not been defined. To this end, we generated a mouse model of Arid1b deficiency specifically in the hematopoietic compartment. Unlike the extensive phenotype observed in mice deficient in its paralog, ARID1A, Arid1b knockout (KO) mice exhibited a modest effect on steady-state hematopoiesis. Nonetheless, transplantation experiments showed that the reconstitution of myeloid cells in irradiated recipient mice was dependent on ARID1B. Furthermore, to assess the effect of the complete loss of ARID1 proteins in the BAF complex, we generated mice lacking both ARID1A and ARID1B in the hematopoietic compartment. The double-KO mice succumbed to acute bone marrow failure resulting from complete loss of BAF-mediated chromatin remodeling activity. Our Assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) analyses revealed that >80% of loci regulated by ARID1B were distinct from those regulated by ARID1A; and ARID1B controlled expression of genes crucial in myelopoiesis. Overall, loss of ARID1B affected chromatin dynamics in murine hematopoietic stem and progenitor cells, albeit to a lesser extent than cells lacking ARID1A.


Asunto(s)
Hematopoyesis , Proteínas Nucleares , Animales , Ratones , Diferenciación Celular/genética , Cromatina , Hematopoyesis/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
2.
Oncogene ; 41(48): 5160-5175, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36271030

RESUMEN

Acute myeloid leukaemia (AML) is a rapidly fatal blood cancer that is characterised by the accumulation of immature myeloid cells in the blood and bone marrow as a result of blocked differentiation. Methods which identify master transcriptional regulators of AML subtype-specific leukaemia cell states and their combinations could be critical for discovering novel differentiation-inducing therapies. In this proof-of-concept study, we demonstrate a novel utility of the Mogrify® algorithm in identifying combinations of transcription factors (TFs) and drugs, which recapitulate granulocytic differentiation of the NB4 acute promyelocytic leukaemia (APL) cell line, using two different approaches. In the first approach, Connectivity Map (CMAP) analysis of these TFs and their target networks outperformed standard approaches, retrieving ATRA as the top hit. We identify dimaprit and mebendazole as a drug combination which induces myeloid differentiation. In the second approach, we show that genetic manipulation of specific Mogrify®-identified TFs (MYC and IRF1) leads to co-operative induction of APL differentiation, as does pharmacological targeting of these TFs using currently available compounds. We also show that loss of IRF1 blunts ATRA-mediated differentiation, and that MYC represses IRF1 expression through recruitment of PML-RARα, the driver fusion oncoprotein in APL, to the IRF1 promoter. Finally, we demonstrate that these drug combinations can also induce differentiation of primary patient-derived APL cells, and highlight the potential of targeting MYC and IRF1 in high-risk APL. Thus, these results suggest that Mogrify® could be used for drug discovery or repositioning in leukaemia differentiation therapy for other subtypes of leukaemia or cancers.


Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Humanos , Tretinoina/farmacología , Tretinoina/uso terapéutico , Farmacología en Red , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Diferenciación Celular/genética , Factores de Transcripción/genética
3.
Pharmacol Res ; 185: 106462, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36167276

RESUMEN

Liposarcoma, the most common soft tissue sarcoma, is a group of fat cell mesenchymal tumors with different histological subtypes. The dysregulation of long non-coding RNAs (lncRNAs) has been observed in human cancers including a few studies in sarcoma. However, the global transcriptome analysis and potential role of lncRNAs remain unexplored in liposarcoma. The present investigation uncovers the transcriptomic profile of liposarcoma by RNA sequencing to gain insight into the global transcriptional changes in liposarcoma. Our RNA sequencing analysis has identified that many oncogenic lncRNAs are differentially expressed in different subtypes of liposarcoma including MALAT1, PVT1, SNHG15, LINC00152, and MIR210HG. Importantly, we identified a highly overexpressed, unannotated, and novel lncRNA in dedifferentiated liposarcomas. We have named it TODL, transcript overexpressed in dedifferentiated liposarcoma. TODL lncRNA displayed significantly higher expression in dedifferentiated liposarcoma cell lines and patient samples. Interestingly, functional studies revealed that TODL lncRNA has an oncogenic function in liposarcoma cells by regulating proliferation, cell cycle, apoptosis, differentiation, and tumorigenesis in the murine model. Silencing of TODL lncRNA highlighted the enrichment of several key oncogenic signaling pathways including cell cycle, transcriptional misregulation, FOXM1 network, p53 signaling, PLK1 signaling, FoxO, and signaling Aurora signaling pathways. RNA pull-down assay revealed the binding of TODL lncRNA with FOXM1, an oncogenic transcription factor, and the key regulator of the cell cycle. Silencing of TODL lncRNA also induces adipogenesis in dedifferentiated liposarcomas. Altogether, our finding indicates that TODL could be utilized as a novel, specific diagnostic biomarker, and a pharmacological target for therapeutic development in controlling aggressive and metastatic dedifferentiated liposarcomas.


Asunto(s)
Proteína Forkhead Box M1 , Liposarcoma , ARN Largo no Codificante , Animales , Humanos , Ratones , Carcinogénesis/genética , Proliferación Celular , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Perfilación de la Expresión Génica , Liposarcoma/genética , Liposarcoma/metabolismo , Liposarcoma/patología , ARN Largo no Codificante/genética , Transcriptoma
4.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163134

RESUMEN

Multiple myeloma (MM) is a hematological disease marked by abnormal growth of B cells in bone marrow. Inherent chromosomal instability and DNA damage are major hallmarks of MM, which implicates an aberrant DNA repair mechanism. Studies have implicated a role for CDK12 in the control of expression of DNA damage response genes. In this study, we examined the effect of a small molecule inhibitor of CDK12-THZ531 on MM cells. Treatment of MM cells with THZ531 led to heightened cell death accompanied by an extensive effect on gene expression changes. In particular, we observed downregulation of genes involved in DNA repair pathways. With this insight, we extended our study to identify synthetic lethal mechanisms that could be exploited for the treatment of MM cells. Combination of THZ531 with either DNA-PK inhibitor (KU-0060648) or PARP inhibitor (Olaparib) led to synergistic cell death. In addition, combination treatment of THZ531 with Olaparib significantly reduced tumor burden in animal models. Our findings suggest that using a CDK12 inhibitor in combination with other DNA repair inhibitors may establish an effective therapeutic regimen to benefit myeloma patients.


Asunto(s)
Anilidas/farmacología , Biomarcadores de Tumor/genética , Reparación del ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Mieloma Múltiple/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Pirimidinas/farmacología , Mutaciones Letales Sintéticas , Animales , Apoptosis , Proteína BRCA1/genética , Proteína BRCA2/genética , Proliferación Celular , Quimioterapia Combinada , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Haematologica ; 107(3): 680-689, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691379

RESUMEN

Recurrent loss-of-function mutations of spliceosome gene, ZRSR2, occur in myelodysplastic syndromes (MDS). Mutation/loss of ZRSR2 in human myeloid cells primarily causes impaired splicing of the U12-type introns. In order to further investigate the role of this splice factor in RNA splicing and hematopoietic development, we generated mice lacking ZRSR2. Unexpectedly, Zrsr2-deficient mice developed normal hematopoiesis with no abnormalities in myeloid differentiation evident in either young or ≥1-year old knockout mice. Repopulation ability of Zrsr2-deficient hematopoietic stem cells was also unaffected in both competitive and non-competitive reconstitution assays. Myeloid progenitors lacking ZRSR2 exhibited mis-splicing of U12-type introns, however, this phenotype was moderate compared to the ZRSR2-deficient human cells. Our investigations revealed that a closely related homolog, Zrsr1, expressed in the murine hematopoietic cells, but not in human cells contributes to splicing of U12-type introns. Depletion of Zrsr1 in Zrsr2 KO myeloid cells exacerbated retention of the U12-type introns, thus highlighting a collective role of ZRSR1 and ZRSR2 in murine U12-spliceosome. We also demonstrate that aberrant retention of U12-type introns of MAPK9 and MAPK14 leads to their reduced protein expression. Overall, our findings highlight that both ZRSR1 and ZRSR2 are functional components of the murine U12-spliceosome, and depletion of both proteins is required to accurately model ZRSR2-mutant MDS in mice.


Asunto(s)
Síndromes Mielodisplásicos , Empalme del ARN , Ribonucleoproteínas , Factor de Empalme U2AF , Animales , Intrones , Ratones , Mutación , Síndromes Mielodisplásicos/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Empalmosomas/genética , Factor de Empalme U2AF/genética , Factor de Empalme U2AF/metabolismo
6.
Genomics ; 112(6): 4628-4639, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32800766

RESUMEN

Fanconi Anemia (FA) is an inherited bone marrow failure syndrome caused by mutation in FA pathway proteins, involved in Interstrand Cross Link (ICL) repair. FA cells exhibit in vitro proliferation arrest due to accumulated DNA damage, hence understanding the rescue mechanism that renders proliferation advantage is required. Gene expression profiling performed in FA patients Peripheral Blood Mononuclear Cells (PBMCs) revealed a wide array of dysregulated biological processes. Functional enrichment and gene clustering analysis showed crippled autophagy process and escalated Notch signalling pathway in FA clinical samples and cell lines. Notch pathway mediators overexpression were reverted in FANCA mutant cells when treated with Rapamycin, an autophagy inducer. Additionally, Rapamycin stabilized cell viability after treatment with the DNA damaging agent, MitomycinC (MMC) and enhanced cell proliferation genes expression in FANCA mutant cells. Inherently FANCA mutant cells express impaired autophagy; thus activation of autophagy channelizes Notch signalling cascade and sustains cell viability.


Asunto(s)
Autofagia/genética , Proliferación Celular/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Receptor Notch1/metabolismo , Autofagia/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Perfilación de la Expresión Génica , Humanos , Mutación , Receptor Notch1/genética , Fase S , Transducción de Señal , Sirolimus/farmacología
7.
PLoS One ; 15(6): e0232068, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32559187

RESUMEN

Cyclin Dependent Kinase 9 (CDK9) associates with Bromodomain and Extra-Terminal Domain (BET) proteins to promote transcriptional elongation by phosphorylation of serine 2 of RNAP II C-terminal domain. We examined the therapeutic potential of selective CDK9 inhibitors (AZD 4573 and MC180295) against human multiple myeloma cells in vitro. Short-hairpin RNA silencing of CDK9 in Multiple Myeloma (MM) cell lines reduced cell viability compared to control cells showing the dependency of MM cells on CDK9. In order to explore synergy with the CDK9 inhibitor, proteolysis targeting chimeric molecule (PROTAC) ARV 825 was added. This latter drug causes ubiquitination of BET proteins resulting in their rapid and efficient degradation. Combination treatment of MM cells with ARV 825 and AZD 4573 markedly reduced their protein expression of BRD 2, BRD 4, MYC and phosphorylated RNA pol II as compared to each single agent alone. Combination treatment synergistically inhibited multiple myeloma cells both in vitro and in vivo with insignificant weight loss. The combination also resulted in marked increase of apoptotic cells at low dose compared to single agent alone. Taken together, our studies show for the first time that the combination of a BET PROTAC (ARV 825) plus AZD 4573 (CDK9 inhibitor) is effective against MM cells.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas/metabolismo , Proteolisis/efectos de los fármacos , Animales , Azepinas/farmacología , Azepinas/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Ratones , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Polimerasa II/metabolismo , ARN Interferente Pequeño/metabolismo , Talidomida/análogos & derivados , Talidomida/farmacología , Talidomida/uso terapéutico , Trasplante Heterólogo
8.
Immunity ; 53(2): 303-318.e5, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32579887

RESUMEN

Granulocyte-monocyte progenitors (GMPs) have been previously defined for their potential to generate various myeloid progenies such as neutrophils and monocytes. Although studies have proposed lineage heterogeneity within GMPs, it is unclear if committed progenitors already exist among these progenitors and how they may behave differently during inflammation. By combining single-cell transcriptomic and proteomic analyses, we identified the early committed progenitor within the GMPs responsible for the strict production of neutrophils, which we designate as proNeu1. Our dissection of the GMP hierarchy led us to further identify a previously unknown intermediate proNeu2 population. Similar populations could be detected in human samples. proNeu1s, but not proNeu2s, selectively expanded during the early phase of sepsis at the expense of monocytes. Collectively, our findings help shape the neutrophil maturation trajectory roadmap and challenge the current definition of GMPs.


Asunto(s)
Células Precursoras de Granulocitos/citología , Monocitos/citología , Mielopoyesis/fisiología , Neutrófilos/citología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de la Célula Individual
9.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31551365

RESUMEN

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Asunto(s)
Neoplasias de la Mama/genética , Factor 1 de Respuesta al Butirato/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias de la Vejiga Urinaria/genética , Regiones no Traducidas 3'/genética , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Factor 1 de Respuesta al Butirato/genética , Carcinogénesis/genética , Ciclo Celular/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Ciclina D1/genética , Factor de Transcripción E2F1/genética , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mutación , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Dedos de Zinc/genética
10.
Blood ; 133(23): 2507-2517, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30952671

RESUMEN

CCAAT/enhancer binding protein ε (CEBPE) is an essential transcription factor for granulocytic differentiation. Mutations of CEBPE occur in individuals with neutrophil-specific granule deficiency (SGD), which is characterized by defects in neutrophil maturation. Cebpe-knockout mice also exhibit defects in terminal differentiation of granulocytes, a phenotype reminiscent of SGD. Analysis of DNase I hypersensitive sites sequencing data revealed an open chromatin region 6 kb downstream of the transcriptional start site of Cebpe in murine myeloid cells. We identified an interaction between this +6-kb region and the core promoter of Cebpe using circular chromosome conformation capture sequencing (4C-seq). To understand the role of this putative enhancer in transcriptional regulation of Cebpe, we targeted it using catalytically inactive Cas9 fused to Krüppel-associated box (KRAB) domain and observed a significant downregulation of transcript and protein levels of CEBPE in cells expressing guide RNA targeting the +6-kb region. To further investigate the role of this novel enhancer further in myelopoiesis, we generated mice with deletion of this region using CRISPR/Cas9 technology. Germline deletion of the +6-kb enhancer resulted in reduced levels of CEBPE and its target genes and caused a severe block in granulocytic differentiation. We also identified binding of CEBPA and CEBPE to the +6-kb enhancer, which suggests their role in regulating the expression of Cebpe In summary, we have identified a novel enhancer crucial for regulating expression of Cebpe and required for normal granulocytic differentiation.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/biosíntesis , Diferenciación Celular/genética , Regulación de la Expresión Génica/genética , Granulocitos/metabolismo , Mielopoyesis/genética , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
11.
Leukemia ; 33(9): 2291-2305, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30858552

RESUMEN

Precise regulation of chromatin architecture is vital to physiological processes including hematopoiesis. ARID1A is a core component of the mammalian SWI/SNF complex, which is one of the ATP-dependent chromatin remodeling complexes. To uncover the role of ARID1A in hematopoietic development, we utilized hematopoietic cell-specific deletion of Arid1a in mice. We demonstrate that ARID1A is essential for maintaining the frequency and function of hematopoietic stem cells and its loss impairs the differentiation of both myeloid and lymphoid lineages. ARID1A deficiency led to a global reduction in open chromatin and ensuing transcriptional changes affected key genes involved in hematopoietic development. We also observed that silencing of ARID1A affected ATRA-induced differentiation of NB4 cells, suggesting its role in granulocytic differentiation of human leukemic cells. Overall, our study provides a comprehensive elucidation of the function of ARID1A in hematopoiesis and highlights the central role of ARID1A-containing SWI/SNF complex in maintaining chromatin dynamics in hematopoietic cells.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Cromatina/genética , Proteínas de Unión al ADN/genética , Hematopoyesis/genética , Factores de Transcripción/genética , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Linaje de la Célula , Humanos , Ratones , Ratones Endogámicos C57BL , Células Mieloides/metabolismo
12.
Haematologica ; 104(6): 1209-1220, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30606790

RESUMEN

Proteolysis targeting chimeric molecule ARV 825 causes ubiquitination of bromodomains resulting in their efficient degradation by proteasome activity. Bromodomain degradation down-regulates MYC transcription contributing to growth inhibition of various human cancers. We examined the therapeutic potential of ARV 825 against multiple myeloma (MM) cells both in vitro and in vivo In a dose-dependent manner, ARV 825 inhibited proliferation of 13 human MM cell lines and three fresh patient samples, and was associated with cell cycle arrest and apoptosis. ARV 825 rapidly and efficiently degraded BRD 2 and BRD 4. Sensitivity of MM cells to ARV 825 was positively correlated with cereblon levels. RNA sequencing analysis showed important genes such as CCR1, RGS, MYB and MYC were down-regulated by ARV 825. A total of 170 small molecule inhibitors were screened for synergy with ARV 825. Combination of ARV 825 with inhibitor of either dual PI3K/mTOR, CRM1, VEGFR, PDGFRα/b, FLT3, IGF-1R, protein kinase C, CBP-EP300 or JAK1/2 showed synergistic activity. Importantly, ARV 825 significantly inhibited the growth of MM xenografts and improved mice survival. Taken together, our results, in conjunction with recently published findings, provide a rationale for investigating the efficacy of ARV 825 for MM, use of cereblon as a biomarker for therapy of MM patients, and the combination of ARV 825 with small molecule inhibitors to improve the outcome of MM patients.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor , Terapia Molecular Dirigida , Mieloma Múltiple/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Azepinas/farmacología , Azepinas/uso terapéutico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Factor de Transcripción Ikaros/metabolismo , Ratones , Mieloma Múltiple/etiología , Mieloma Múltiple/patología , Mieloma Múltiple/terapia , Proteolisis/efectos de los fármacos , Talidomida/análogos & derivados , Talidomida/farmacología , Talidomida/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Haematologica ; 103(12): 1980-1990, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30093396

RESUMEN

Chromosomal translocation t(8;21)(q22;q22) which leads to the generation of oncogenic RUNX1-RUNX1T1 (AML1-ETO) fusion is observed in approximately 10% of acute myelogenous leukemia (AML). To identify somatic mutations that co-operate with t(8;21)-driven leukemia, we performed whole and targeted exome sequencing of an Asian cohort at diagnosis and relapse. We identified high frequency of truncating alterations in ASXL2 along with recurrent mutations of KIT, TET2, MGA, FLT3, and DHX15 in this subtype of AML. To investigate in depth the role of ASXL2 in normal hematopoiesis, we utilized a mouse model of ASXL2 deficiency. Loss of ASXL2 caused progressive hematopoietic defects characterized by myeloid hyperplasia, splenomegaly, extramedullary hematopoiesis, and poor reconstitution ability in transplantation models. Parallel analyses of young and >1-year old Asxl2-deficient mice revealed age-dependent perturbations affecting, not only myeloid and erythroid differentiation, but also maturation of lymphoid cells. Overall, these findings establish a critical role for ASXL2 in maintaining steady state hematopoiesis, and provide insights into how its loss primes the expansion of myeloid cells.


Asunto(s)
Diferenciación Celular/genética , Proliferación Celular/genética , Hematopoyesis/genética , Células Mieloides/metabolismo , Proteínas Represoras/genética , Enfermedad Aguda , Animales , Perfilación de la Expresión Génica/métodos , Humanos , Leucemia Mieloide/genética , Leucemia Mieloide/patología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mielopoyesis/genética
14.
Methods Mol Biol ; 1783: 243-258, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767366

RESUMEN

Gene expression analysis mainly helps to study gene quantification methods by using various downstream detection approaches like imaging, amplification, probe hybridization, or sequencing. With respect to DNA, which is less static, mRNA levels vary over time, between cell types under divergent conditions. Gene expression analysis is principally focused on determination of mRNA levels transcribed from DNA. DNA microarrays are one of the robust and powerful tools to detect changes in multiple transcripts in larger cohorts in parallel. The basic principle of DNA microarray hybridization is complementary base pairing of single-stranded nucleic-acid sequences. On a microarray platform (also called a chip), known sequences called targets are attached at fixed locations (spots) to a solid surface such as glass using robotic spotting. Since a large number of samples (variables) are used in a typical hybridization experiment, which often leads to impreciseness for example, target mRNA transcribed from the same source should be identical every time. In such cases, developing an optimized protocol for microarray platform to study the expression profiling of differentially regulated genes is a challenging task. Thus genome-wide expression array analysis yields data about candidate genes that may be involved in disease acquisition progression, and helps in better understanding the pathophysiology of the disease. In this chapter we describe in detail the microarray technique, a well-accepted method for understanding the development and progression of Fanconi anemia (FA), a genetic disorder which is characterized by progressive bone marrow failure and a predisposition to cancer.


Asunto(s)
Biología Computacional/métodos , Anemia de Fanconi/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Anemia de Fanconi/patología , Humanos
15.
Haematologica ; 103(8): 1269-1277, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29773596

RESUMEN

Maturation of granulocytes is dependent on controlled gene expression by myeloid lineage restricted transcription factors. CEBPE is one of the essential transcription factors required for granulocytic differentiation. Identification of downstream targets of CEBPE is vital to understand better its role in terminal granulopoiesis. In this study, we have identified Card10 as a novel target of CEBPE. We show that CEBPE binds to regulatory elements upstream of the murine Card10 locus, and expression of CARD10 is significantly reduced in Cebpe knock-out mice. Silencing Card10 in a human cell line and in murine primary cells impaired granulopoiesis, affecting expression of genes involved in myeloid cell development and function. Taken together, our data demonstrate for the first time that Card10 is expressed in granulocytes and is a direct target of CEBPE with functions extending to myeloid differentiation.


Asunto(s)
Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Diferenciación Celular , Granulocitos/citología , Animales , Sitios de Unión , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Granulocitos/metabolismo , Humanos , Ratones , Células Mieloides , Unión Proteica , Factores de Transcripción/genética
16.
Sci Rep ; 7: 46440, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28440307

RESUMEN

C/EBPε is a critical transcriptional factor for granulocyte differentiation and function. Individuals with germline mutations of C/EBPε fail to develop normal granulocytes and suffer from repeated infections. In order to gain a global view of the transcriptional machinery regulated by C/EBPε, we performed whole-genome ChIP-Seq using mouse bone marrow cells. To complement the C/EBPε DNA binding analyses, RNA-Sequencing was done in parallel using sorted mature and immature granulocytes from WT and C/EBPε KO bone marrow. This approach led to the identification of several direct targets of C/EBPε, which are potential effectors of its role in granulocytic differentiation and function. Interestingly, Trem1, a gene critical to granulocyte function, was identified as a direct C/EBPε target gene. Trem1 expression overlaps very closely with expression signature of C/EBPε during hematopoietic development. Luciferase reporter and EMSA assays revealed that C/EBPε binds to the regulatory elements of Trem1 and regulates its expression during granulocytic differentiation. In addition, we provide evidence that inflammatory stimuli (LPS) can also control the expression of Trem1 independent of C/EBPε. Overall, this study provides comprehensive profiling of the transcriptional network controlled by C/EBPε during granulopoiesis and identifies Trem1 as one of its downstream effectors involved in eliciting an immune response.


Asunto(s)
Células de la Médula Ósea/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Granulocitos/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Diferenciación Celular/fisiología , Lipopolisacáridos , Ratones , Neutrófilos/metabolismo , Transcriptoma
17.
Oncotarget ; 7(36): 58065-58074, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27517150

RESUMEN

Fanconi anemia (FA) is a rare genetic disorder associated with bone-marrow failure, genome instability and cancer predisposition. Recently, we and others have demonstrated dysfunctional mitochondria with morphological alterations in FA cells accompanied by high reactive oxygen species (ROS) levels. Mitochondrial morphology is regulated by continuous fusion and fission events and the misbalance between these two is often accompanied by autophagy. Here, we provide evidence of impaired autophagy in FA. We demonstrate that FA cells have increased number of autophagic (presumably mitophagic) events and accumulate dysfunctional mitochondria due to an impaired ability to degrade them. Moreover, mitochondrial fission accompanied by oxidative stress (OS) is a prerequisite condition for mitophagy in FA and blocking this pathway may release autophagic machinery to clear dysfunctional mitochondria.


Asunto(s)
Anemia de Fanconi/fisiopatología , Mitocondrias/patología , Dinámicas Mitocondriales , Mitofagia , Enfermedades Raras/fisiopatología , Autofagia , Línea Celular , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mitocondrias/ultraestructura , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
18.
In Vitro Cell Dev Biol Anim ; 52(2): 204-17, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26542170

RESUMEN

3D cultures of stem cells can preserve differentiation potential or increase the efficiency of methods that induce differentiation. Mouse bone marrow-derived stromal cells (BMSCs) were cultured in 3D as scaffold-free spheroids or "mesoid bodies" (MBs) and as aggregates on poly(lactic) acid microspheres (MB/MS). 3D cultures demonstrated viable cells, interaction on multiple planes, altered cell morphology, and the formation of structures similar to epithelial cell bridges. Cell proliferation was limited in suspension cultures of MB and MB/MS; however, cells regained proliferative capacity when transferred to flat substrates of tissue culture plates (TCPs). Expanded as monolayer, cells retained expression of Sca-1 and CD44 stem cell markers. 3D cultures demonstrated enhanced potential for adipogenic and osteogenic differentiation showing higher triglyceride accumulation and robust mineralization in comparison with TCP cultures. Enhanced and efficient adipogenesis was also observed in 3D cultures generated in a rotating cell culture system. Preservation of multilineage potential of BMSC was demonstrated in 5-azacytidine treatment of 3D cultures and TCP by expression of cardiac markers GATA4 and ACTA1 although functioning cardiomyocytes were not derived.


Asunto(s)
Adipogénesis/genética , Técnicas de Cultivo de Célula , Diferenciación Celular/genética , Osteogénesis/genética , Actinas/biosíntesis , Animales , Proliferación Celular/genética , Factor de Transcripción GATA4/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Células Madre Mesenquimatosas/citología , Ratones , Miocitos Cardíacos/metabolismo , Ingeniería de Tejidos , Andamios del Tejido
19.
PLoS One ; 10(8): e0135958, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26295583

RESUMEN

Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated) and 2542 (downregulated) genes (>2 fold) in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated) and 444 (downregulated) genes (>2 fold) under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.


Asunto(s)
Proteínas de Ciclo Celular/genética , Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/genética , Proteínas Proto-Oncogénicas/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , MicroARNs/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Simulación de Ingravidez
20.
Eur J Cell Biol ; 94(10): 444-52, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26153430

RESUMEN

The neonatal heart is a very useful tool for the study of biochemical pathways and properties of cardiomyocytes and as it has the potential to regenerate for a brief period of time from birth; it is also useful to study cardiac regeneration. However, as the heart matures, this proficiency for regeneration is reduced. This regenerative potential may be influenced by the microenvironment of the heart in the early stages of postnatal development and therefore, cell cultures derived at this stage may contain functional cardiomyocytes and progenitor cells. The aim of this study was to identify key steps in the isolation and culture of such early stage-neonatal mouse hearts to allow maximum migration of cardiomyocytes from the explant and their maintenance as functional, long term cultures. Explant cultures of mouse ventricles preserved 3-dimensional structure and generated migrating layers of cardiomyocytes that expressed alpha sarcomeric actin which could be further sub-cultured by enzymatic dissociation. Western blotting demonstrated expression of c-KIT, GATA4, alpha sarcomeric actin and connexin43 proteins after 20 days of explant culture. ACTA1, GATA4, and CX43 continued to express in five weeks old explant cultures while the c-KIT protein was expressed up to two passages during sub-culture. Real time PCR and SQRT PCR also demonstrated gene expression of cardiomyocyte markers in long term cultures. Migrating cells from the explants assembled into contracting spheroids after subculture and expressed the c-KIT protein. Progenitor markers CD44, CD90, and extracellular proteins, periostin and vimentin demonstrated the preservation of cellular heterogeneity in such cultures. Supplementation with Hydrocortisone maintained a cardioprotective environment and reduced the non-myocyte population. This is an optimized and efficient method for the generation of neonatal heart cultures that is not labor intensive and does not require supplementation with cytokines.


Asunto(s)
Técnicas de Cultivo de Célula , Ventrículos Cardíacos/citología , Mioblastos Cardíacos/citología , Miocitos Cardíacos/citología , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Movimiento Celular , Separación Celular/métodos , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Ratones , Mioblastos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...