Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 2582, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788304

RESUMEN

Nanofiber networks comprising polymer-metal core-shell structures exhibit several advantages, such as high uniformities and considerable flexibilities. Additionally, the flexibility of the nanofiber network may be further enhanced by engineering the network topology. Therefore, in this study, the topologies of polyvinylidene fluoride (PVDF)-Pt core-shell nanofiber (CS NF) networks were engineered, and their performances as flexible transparent electrodes were comprehensively evaluated. Three distinct topologies of nanofiber networks were induced using circular, square, and rectangular electrode collectors. A highly uniform nanofiber network was obtained using the square electrode collector, which generated a high density of nanofiber junctions (nodes). Consequently, this nanofiber network exhibited the smallest sheet resistance [Formula: see text] and lowest optical transmittance [Formula: see text] among the three CS NF networks. In contrast, nanofiber bundles were frequently formed in the randomly aligned CS NF network prepared using the circular electrode collector, reducing the node density. As a result, it simultaneously exhibited a very small [Formula: see text] and high [Formula: see text], generating the largest percolation figure of merit [Formula: see text]. Under certain strain directions, the CS NF network with the engineered topology exhibited a significantly enhanced mechanical durability. Finally, a flexible piezoelectric pressure sensor with CS NF network electrodes was fabricated and its sensing performance was excellent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...