Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Stem Cell Res Ther ; 13(1): 288, 2022 06 30.
Article En | MEDLINE | ID: mdl-35773684

BACKGROUND: α-1-syntrophin (SNTA1), a protein encoded by SNTA1, is highly expressed in human cardiomyocytes. Mutations in SNTA1 are associated with arrhythmia and cardiomyopathy. Previous research on SNTA1 has been based on non-human cardiomyocytes. This study was designed to identify the phenotype of SNTA1-deficiency using human cardiomyocytes. METHODS: SNTA1 was knocked out in the H9 embryonic stem cell line using the CRISPR-Cas9 system. H9SNTA1KO cells were then induced to differentiate into cardiomyocytes using small molecule inhibitors. The phenotypic discrepancies associated with SNTA1-deficient cardiomyocytes were investigated. RESULTS: SNTA1 was truncated at the 149th amino acid position of PH1 domain by a stop codon (TGA) using the CRISPR-Cas9 system. SNTA1-deficiency did not affect the pluripotency of H9SNTA1KO, and they retain their in vitro ability to differentiate into cardiomyocytes. However, H9SNTA1KO derived cardiomyocytes exhibited hypertrophic phenotype, lower cardiac contractility, weak calcium transient intensity, and lower level of calcium in the sarcoplasmic reticulum. Early treatment of SNTA1-deficient cardiomyocytes with ranolazine improved the calcium transient intensity and cardiac contractility. CONCLUSION: SNTA1-deficient cardiomyocytes can be used to research the etiology, pathogenesis, and potential therapies for myocardial diseases. The SNTA1-deficient cardiomyocyte model suggests that the maintenance of cardiac calcium homeostasis is a key target in the treatment of myocardial-related diseases.


Calcium , Myocytes, Cardiac , Calcium/metabolism , Cell Line , Humans , Hypertrophy/metabolism , Myocytes, Cardiac/metabolism , Phenotype
2.
Molecules ; 22(7)2017 Jun 22.
Article En | MEDLINE | ID: mdl-28640212

The emergence of drug resistant variants of the influenza virus has led to a great need to identify novel and effective antiviral agents. In our previous study, a series of sialic acid (C-2 and C-4)-pentacyclic triterpene conjugates have been synthesized, and a five-fold more potent antiviral activity was observed when sialic acid was conjugated with pentacyclic triterpene via C-4 than C-2. It was here that we further reported the synthesis and anti-influenza activity of novel sialic acid (C-5 and C-9)-pentacyclic triterpene conjugates. Their structures were confirmed by ESI-HRMS, ¹H-NMR, and 13C-NMR spectroscopic analyses. Two conjugates (26 and 42) showed strong cytotoxicity to MDCK cells in the CellTiter-Glo assay at a concentration of 100 µM. However, they showed no significant cytotoxicity to HL-60, Hela, and A549 cell lines in MTT assay under the concentration of 10 µM (except compound 42 showed weak cytotoxicity to HL-60 cell line (10 µM, ~53%)). Compounds 20, 28, 36, and 44 displayed weak potency to influenza A/WSN/33 (H1N1) virus (100 µM, ~20-30%), and no significant anti-influenza activity was found for the other conjugates. The data suggested that both the C-5 acetylamide and C-9 hydroxy of sialic acid were important for its binding with hemagglutinin during viral entry into host cells, while C-4 and C-2 hydroxy were not critical for the binding process and could be replaced with hydrophobic moieties. The research presented herein had significant implications for the design of novel antiviral inhibitors based on a sialic acid scaffold.


Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , N-Acetylneuraminic Acid/chemistry , Triterpenes/chemical synthesis , Triterpenes/pharmacology , Animals , Antiviral Agents/chemistry , Carbon-13 Magnetic Resonance Spectroscopy , Cell Line, Tumor , Dogs , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Madin Darby Canine Kidney Cells , Proton Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Triterpenes/chemistry
3.
J Ethnopharmacol ; 176: 475-84, 2015 Dec 24.
Article En | MEDLINE | ID: mdl-26578185

ETHNOPHARMACOLOGICAL RELEVANCE: Huang-Qin, derived from the roots of Scutellaria baicalensis Georgi, is a popular Chinese herbal medicine mainly used to treat influenza and cancer. This study aims to elucidate the anti-influenza, anti-cancer and anti-oxidation effective components of S. baicalensis. MATERIALS AND METHODS: Various column chromatography techniques and semi-preparative HPLC were used to isolate Scutellaria compounds, and their structures were identified by HRESIMS and NMR spectroscopic analysis. The pure compounds were evaluated for anti-influenza activities against A/WSN/33 (H1N1) virus in MDCK cells, cytotoxic activities against HepG2, SW480 and MCF7 human cancer cells by MTS assay, and antioxidant activities by Nrf2 luciferase reporter assay. In addition, the contents of 12 major compounds in 27 batches of S. baicalensis were simultaneously determined by a fully validated UPLC/UV method. RESULTS: A total of thirty compounds (1-30), including four new ones (3, 7, 11 and 23), were isolated from S. baicalensis. Baicalin (15), baicalein (26), wogonin (27), chrysin (28) and oroxylin A (30) showed potent anti-H1N1 activities, with IC50 values of 7.4, 7.5, 2.1, 7.7 and 12.8 µM, respectively, which were remarkably more potent than the positive drug Osv-P (oseltamivir phosphate, IC50 45.6 µM). Most free flavones (26-28 and 30) showed significant cytotoxic activities at 10 µM (up to 61.2% inhibition rate). Furthermore, 30 could activate Nrf2 transcription by 3.8-fold of the control at 10 µM. UPLC analysis indicated the 12 major compounds (including the bioactive ones) accounted for 195.93 ± 43.9 mg g(-)(1) of the herbal materials. CONCLUSION: This study demonstrated that free flavones showed potent anti-influenza, anti-cancer and anti-oxidative activities. They are important effective components of S. baicalensis, and can be used as chemical markers for quality control of this herbal medicine.


Antioxidants/pharmacology , Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , NF-E2-Related Factor 2/genetics , Plant Extracts/pharmacology , Animals , Antioxidants/chemistry , Antiviral Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Dogs , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Madin Darby Canine Kidney Cells , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Extracts/chemistry , Scutellaria baicalensis/chemistry
...