Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Med ; 22(6): 1061-1068, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32099069

RESUMEN

PURPOSE: TNR, encoding Tenascin-R, is an extracellular matrix glycoprotein involved in neurite outgrowth and neural cell adhesion, proliferation and migration, axonal guidance, myelination, and synaptic plasticity. Tenascin-R is exclusively expressed in the central nervous system with highest expression after birth. The protein is crucial in the formation of perineuronal nets that ensheath interneurons. However, the role of Tenascin-R in human pathology is largely unknown. We aimed to establish TNR as a human disease gene and unravel the associated clinical spectrum. METHODS: Exome sequencing and an online matchmaking tool were used to identify patients with biallelic variants in TNR. RESULTS: We identified 13 individuals from 8 unrelated families with biallelic variants in TNR sharing a phenotype consisting of spastic para- or tetraparesis, axial muscular hypotonia, developmental delay, and transient opisthotonus. Four homozygous loss-of-function and four different missense variants were identified. CONCLUSION: We establish TNR as a disease gene for an autosomal recessive nonprogressive neurodevelopmental disorder with spasticity and transient opisthotonus and highlight the role of central nervous system extracellular matrix proteins in the pathogenicity of spastic disorders.


Asunto(s)
Espasticidad Muscular , Trastornos del Neurodesarrollo , Sistema Nervioso Central , Matriz Extracelular , Homocigoto , Humanos , Espasticidad Muscular/genética , Trastornos del Neurodesarrollo/genética
2.
Brain ; 142(5): 1195-1202, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30915432

RESUMEN

Disruption of cellular iron homeostasis can contribute to neurodegeneration. In mammals, two iron-regulatory proteins (IRPs) shape the expression of the iron metabolism proteome. Targeted deletion of Ireb2 in a mouse model causes profoundly disordered iron metabolism, leading to functional iron deficiency, anemia, erythropoietic protoporphyria, and a neurodegenerative movement disorder. Using exome sequencing, we identified the first human with bi-allelic loss-of-function variants in the gene IREB2 leading to an absence of IRP2. This 16-year-old male had neurological and haematological features that emulate those of Ireb2 knockout mice, including neurodegeneration and a treatment-resistant choreoathetoid movement disorder. Cellular phenotyping at the RNA and protein level was performed using patient and control lymphoblastoid cell lines, and established experimental assays. Our studies revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes, and mitochondrial dysfunction, as observed in the mouse model. The patient's cellular abnormalities were reversed by lentiviral-mediated restoration of IRP2 expression. These results confirm that IRP2 is essential for regulation of iron metabolism in humans, and reveal a previously unrecognized subclass of neurodegenerative disease. Greater understanding of how the IRPs mediate cellular iron distribution may ultimately provide new insights into common and rare neurodegenerative processes, and could result in novel therapies.


Asunto(s)
Variación Genética/fisiología , Proteína 2 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/genética , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/genética , Adolescente , Línea Celular Transformada , Humanos , Masculino , Enfermedades Neurodegenerativas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA