Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(2): e0292479, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38349923

RESUMEN

Recombinase enzymes are extremely efficient at integrating very large DNA fragments into target genomes. However, intrinsic sequence specificities curtail their use to DNA sequences with sufficient homology to endogenous target motifs. Extensive engineering is therefore required to broaden applicability and robustness. Here, we describe the directed evolution of novel lambda integrase variants capable of editing exogenous target sequences identified in the diatom Phaeodactylum tricornutum and the algae Nannochloropsis oceanica. These microorganisms hold great promise as conduits for green biomanufacturing and carbon sequestration. The evolved enzyme variants show >1000-fold switch in specificity towards the non-natural target sites when assayed in vitro. A single-copy target motif in the human genome with homology to the Nannochloropsis oceanica site can also be efficiently targeted using an engineered integrase, both in vitro and in human cells. The developed integrase variants represent useful additions to the DNA editing toolbox, with particular application for targeted genomic insertion of large DNA cargos.


Asunto(s)
Diatomeas , Estramenopilos , Humanos , Integrasas/genética , Genoma Humano/genética , ADN , Genómica , Diatomeas/genética , Estramenopilos/genética , Edición Génica
2.
Biotechnol Bioeng ; 120(11): 3200-3209, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37555384

RESUMEN

Polyethylene terephthalate (PET) hydrolase enzymes show promise for enzymatic PET degradation and green recycling of single-use PET vessels representing a major source of global pollution. Their full potential can be unlocked with enzyme engineering to render activities on recalcitrant PET substrates commensurate with cost-effective recycling at scale. Thermostability is a highly desirable property in industrial enzymes, often imparting increased robustness and significantly reducing quantities required. To date, most engineered PET hydrolases show improved thermostability over their parental enzymes. Here, we report engineered thermostable variants of Ideonella sakaiensis PET hydrolase enzyme (IsPETase) developed using two scaffolding strategies. The first employed SpyCatcher-SpyTag technology to covalently cyclize IsPETase, resulting in increased thermostability that was concomitant with reduced turnover of PET substrates compared to native IsPETase. The second approach using a GFP-nanobody fusion protein (vGFP) as a scaffold yielded a construct with a melting temperature of 80°C. This was further increased to 85°C when a thermostable PETase variant (FAST PETase) was scaffolded into vGFP, the highest reported so far for an engineered PET hydrolase derived from IsPETase. Thermostability enhancement using the vGFP scaffold did not compromise activity on PET compared to IsPETase. These contrasting results highlight potential topological and dynamic constraints imposed by scaffold choice as determinants of enzyme activity.

3.
Structure ; 30(5): 733-742.e7, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35290795

RESUMEN

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Unión Proteica , Dominios Proteicos , Proteína p53 Supresora de Tumor/metabolismo
4.
Nucleic Acids Res ; 48(22): e128, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33104786

RESUMEN

Directed evolution methodologies benefit from read-outs quantitatively linking genotype to phenotype. We therefore devised a method that couples protein-peptide interactions to the dynamic read-out provided by an engineered DNA polymerase. Fusion of a processivity clamp protein to a thermostable nucleic acid polymerase enables polymerase activity and DNA amplification in otherwise prohibitive high-salt buffers. Here, we recapitulate this phenotype by indirectly coupling the Sso7d processivity clamp to Taq DNA polymerase via respective fusion to a high affinity and thermostable interacting protein-peptide pair. Escherichia coli cells co-expressing protein-peptide pairs can directly be used in polymerase chain reactions to determine relative interaction strengths by the measurement of amplicon yields. Conditional polymerase activity is further used to link genotype to phenotype of interacting protein-peptide pairs co-expressed in E. coli using the compartmentalized self-replication directed evolution platform. We validate this approach, termed compartmentalized two-hybrid replication, by selecting for high-affinity peptides that bind two model protein partners: SpyCatcher and the large fragment of NanoLuc luciferase. We further demonstrate directed co-evolution by randomizing both protein and peptide components of the SpyCatcher-SpyTag pair and co-selecting for functionally interacting variants.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli/genética , Péptidos/genética , Mapas de Interacción de Proteínas/genética , Compartimento Celular/genética , Replicación del ADN/genética , Regulación Bacteriana de la Expresión Génica/genética , Genotipo , Luciferasas/genética , Fenotipo , Ingeniería de Proteínas , Polimerasa Taq/genética
5.
Nucleic Acids Res ; 47(4): 1637-1652, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30649466

RESUMEN

The DNA binding domain (DBD) of the tumor suppressor p53 is the site of several oncogenic mutations. A subset of these mutations lowers the unfolding temperature of the DBD. Unfolding leads to the exposure of a hydrophobic ß-strand and nucleates aggregation which results in pathologies through loss of function and dominant negative/gain of function effects. Inspired by the hypothesis that structural changes that are associated with events initiating unfolding in DBD are likely to present opportunities for inhibition, we investigate the dynamics of the wild type (WT) and some aggregating mutants through extensive all atom explicit solvent MD simulations. Simulations reveal differential conformational sampling between the WT and the mutants of a turn region (S6-S7) that is contiguous to a known aggregation-prone region (APR). The conformational properties of the S6-S7 turn appear to be modulated by a network of interacting residues. We speculate that changes that take place in this network as a result of the mutational stress result in the events that destabilize the DBD and initiate unfolding. These perturbations also result in the emergence of a novel pocket that appears to have druggable characteristics. FDA approved drugs are computationally screened against this pocket.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas Mutantes/química , Bibliotecas de Moléculas Pequeñas/química , Proteína p53 Supresora de Tumor/química , Proteínas de Unión al ADN/genética , Evaluación Preclínica de Medicamentos/métodos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas/efectos de los fármacos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/genética , Mutación/genética , Conformación Proteica/efectos de los fármacos , Dominios Proteicos/efectos de los fármacos , Dominios Proteicos/genética , Desplegamiento Proteico/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
6.
Sci Rep ; 6: 33972, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27678309

RESUMEN

The identification of genes encoding a p53 family member and an Mdm2 ortholog in the ancient placozoan Trichoplax adhaerens advocates for the evolutionary conservation of a pivotal stress-response pathway observed in all higher eukaryotes. Here, we recapitulate several key functionalities ascribed to this known interacting protein pair by analysis of the placozoan proteins (Tap53 and TaMdm2) using both in vitro and cellular assays. In addition to interacting with each other, the Tap53 and TaMdm2 proteins are also able to respectively bind human Mdm2 and p53, providing strong evidence for functional conservation. The key p53-degrading function of Mdm2 is also conserved in TaMdm2. Tap53 retained DNA binding associated with p53 transcription activation function. However, it lacked transactivation function in reporter genes assays using a heterologous cell line, suggesting a cofactor incompatibility. Overall, the data supports functional roles for TaMdm2 and Tap53, and further defines the p53 pathway as an evolutionary conserved fulcrum mediating cellular response to stress.

7.
Genes Dev ; 30(3): 281-92, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26798135

RESUMEN

The extant jawless vertebrates, represented by lampreys and hagfish, are the oldest group of vertebrates and provide an interesting genomic evolutionary pivot point between invertebrates and jawed vertebrates. Through genome analysis of one of these jawless vertebrates, the Japanese lamprey (Lethenteron japonicum), we identified all three members of the important p53 transcription factor family--Tp53, Tp63, and Tp73--as well as the Mdm2 and Mdm4 genes. These genes and their products are significant cellular regulators in human cancer, and further examination of their roles in this most distant vertebrate relative sheds light on their origin and coevolution. Their important role in response to DNA damage has been highlighted by the discovery of multiple copies of the Tp53 gene in elephants. Expression of lamprey p53, Mdm2, and Mdm4 proteins in mammalian cells reveals that the p53-Mdm2 interaction and the Mdm2/Mdm4 E3 ligase activity existed in the common ancestor of vertebrates and have been conserved for >500 million years of vertebrate evolution. Lamprey Mdm2 degrades human p53 with great efficiency, but this interaction is not blocked by currently available small molecule inhibitors of the human HDM2 protein, suggesting utility of lamprey Mdm2 in the study of the human p53 signaling pathway.


Asunto(s)
Lampreas/genética , Lampreas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Genoma , Humanos , Lampreas/clasificación , Ratones , Modelos Moleculares , Filogenia , Unión Proteica , Proteolisis , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
8.
Nucleic Acids Res ; 44(6): e55, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26673710

RESUMEN

Genome engineering of human cells plays an important role in biotechnology and molecular medicine. In particular, insertions of functional multi-transgene cassettes into suitable endogenous sequences will lead to novel applications. Although several tools have been exploited in this context, safety issues such as cytotoxicity, insertional mutagenesis and off-target cleavage together with limitations in cargo size/expression often compromise utility. Phage λ integrase (Int) is a transgenesis tool that mediates conservative site-specific integration of 48 kb DNA into a safe harbor site of the bacterial genome. Here, we show that an Int variant precisely recombines large episomes into a sequence, term edattH4X, found in 1000 human Long INterspersed Elements-1 (LINE-1). We demonstrate single-copy transgenesis through attH4X-targeting in various cell lines including hESCs, with the flexibility of selecting clones according to transgene performance and downstream applications. This is exemplified with pluripotency reporter cassettes and constitutively expressed payloads that remain functional in LINE1-targeted hESCs and differentiated progenies. Furthermore, LINE-1 targeting does not induce DNA damage-response or chromosomal aberrations, and neither global nor localized endogenous gene expression is substantially affected. Hence, this simple transgene addition tool should become particularly useful for applications that require engineering of the human genome with multi-transgenes.


Asunto(s)
Técnicas de Transferencia de Gen , Ingeniería Genética/métodos , Integrasas/genética , Plásmidos/metabolismo , Transgenes , Proteínas Virales/genética , Bacteriófago lambda/química , Bacteriófago lambda/enzimología , Bacteriófago lambda/genética , Secuencia de Bases , Línea Celular Tumoral , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Expresión Génica , Genes Reporteros , Genoma Humano , Humanos , Integrasas/metabolismo , Elementos de Nucleótido Esparcido Largo , Datos de Secuencia Molecular , Plásmidos/química , Proteínas Virales/metabolismo
9.
Protein Eng Des Sel ; 28(7): 211-20, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25787692

RESUMEN

Advances in genome engineering are attendant on the development of novel enzyme variants with programed substrate specificities and improved activity. We have devised a novel selection method, wherein the activity of a recombinase deletes the gene encoding an inhibitor of an enzyme conferring a selectable phenotype. By using ß-lactamase and the ß-lactamase inhibitor protein, the selection couples recombinase activity to Escherichia coli survival in the presence of ampicillin. Using this method, we generated λ integrase variants displaying improved in vitro recombination of a non-cognate substrate present in the human genome. One generalist integrase variant displaying enhanced catalytic activity was further used in a facile, single-step transformation method to introduce transgenes up to 8.5 kb into the unique endogenous attB site of common laboratory E.coli strains.


Asunto(s)
Evolución Molecular Dirigida/métodos , Integrasas/genética , Integrasas/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Escherichia coli/genética , Humanos , Mutación , Recombinación Genética , Especificidad por Sustrato , Transformación Genética , beta-Lactamasas/genética
10.
Biosens Bioelectron ; 56: 250-7, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24508816

RESUMEN

We have previously developed a sensitive and modular homogenous biosensor system using peptides to detect target ligands. By transposing the basic mechanistic principle of the nuclease protection assay into this biosensor framework, we have developed the protease exclusion (PE) assay which can discern antagonists of protein-protein interactions in a rapid, single-step format. We demonstrate the concept with multiple protein-peptide pairs and validate the method by successfully screening a small molecule library for compounds capable of inhibiting the therapeutically relevant p53-Mdm2 interaction. The Protease Exclusion method adds to the compendium of assays available for rapid analyte detection and is particularly suited for drug screening applications.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Técnicas Biosensibles/métodos , Evaluación Preclínica de Medicamentos/métodos , Fluorescencia , Ensayos Analíticos de Alto Rendimiento/métodos , Péptidos/química , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores
11.
Micron ; 43(9): 996-1000, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22537717

RESUMEN

Transcription factors play a central role in cell biology through binding to target DNA elements and regulating gene expression. In this study, we used the p53 tumour suppressor as a model transcription factor to develop an imaging based assay to measure DNA binding. The assay utilizes fluorescence imaging microscopy to detect labelled p53 bound to DNA coated on microbeads. We demonstrate the ability to multiplex the assay by interrogating simultaneous binding to variant DNA sequences present on tractable beads. Additionally, the assay measures activation of p53 for increased DNA binding by a known peptide in addition to reactivation of mutant p53 by a small molecule. It may therefore be adaptable to a high-content imaging screen for compounds capable of restoring the function of mutant p53 associated with cancer.


Asunto(s)
ADN/metabolismo , Microscopía Fluorescente/métodos , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Microesferas , Unión Proteica , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...