Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Ecol Appl ; 32(8): e2704, 2022 12.
Article En | MEDLINE | ID: mdl-35801514

A changing climate is altering ecosystem carbon dynamics with consequences for natural systems and human economies, but there are few tools available for land managers to meaningfully incorporate carbon trajectories into planning efforts. To address uncertainties wrought by rapidly changing conditions, many practitioners adopt resistance and resilience as ecosystem management goals, but these concepts have proven difficult to monitor across landscapes. Here, we address the growing need to understand and plan for ecosystem carbon with concepts of resistance and resilience. Using time series of carbon fixation (n = 103), we evaluate forest management treatments and their relative impacts on resistance and resilience in the context of an expansive and severe natural disturbance. Using subalpine spruce-fir forest with a known management history as a study system, we match metrics of ecosystem productivity (net primary production, g C m-2 year-1 ) with site-level forest structural measurements to evaluate (1) whether past management efforts impacted forest resistance and resilience during a spruce beetle (Dendroctonus rufipennis) outbreak, and (2) how forest structure and physiography contribute to anomalies in carbon trajectories. Our analyses have several important implications. First, we show that the framework we applied was robust for detecting forest treatment impacts on carbon trajectories, closely tracked changes in site-level biomass, and was supported by multiple evaluation methods converging on similar management effects on resistance and resilience. Second, we found that stand species composition, site productivity, and elevation predicted resistance, but resilience was only related to elevation and aspect. Our analyses demonstrate application of a practical approach for comparing forest treatments and isolating specific site and physiographic factors associated with resistance and resilience to biotic disturbance in a forest system, which can be used by managers to monitor and plan for both outcomes. More broadly, the approach we take here can be applied to many scenarios, which can facilitate integrated management and monitoring efforts.


Ecosystem , Picea , Humans , Carbon , Forests , Carbon Cycle
2.
PLoS One ; 12(8): e0181778, 2017.
Article En | MEDLINE | ID: mdl-28777802

Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.


Coleoptera/physiology , Conservation of Natural Resources/methods , Fires , Plant Development , Trees/growth & development , Animals , Colorado , Disasters , Environmental Monitoring , Forests , Population Density
3.
Ecol Appl ; 17(6): 1638-55, 2007 Sep.
Article En | MEDLINE | ID: mdl-17913129

Although high-severity fire is the primary type of disturbance shaping the structure of lodgepole pine (Pinus contorta) stands in the southern Rocky Mountains, many post-fire stands are also affected by blowdown, low-severity surface fires, and/or outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae). The ecological effects of these secondary disturbances are poorly understood but are potentially important in the context of managing for ecological restoration and fire hazard mitigation. We investigated the effects of blowdown, surface fires, and MPB outbreaks on demographic processes in post-fire lodgepole pine stands in Rocky Mountain National Park, Colorado, USA. We used dendroecological methods to reconstruct stand characteristics prior to and following secondary disturbances for paired stands with and without secondary disturbances. Surface fire events do not kill canopy trees or trigger pulses of recruitment and as such do not have detectable influences on stand development. In contrast, both MPB and blowdown kill canopy trees and trigger pulses of tree regeneration of lodgepole pine and subalpine fir (Abies lasiocarpa). The amount and species composition of post-disturbance regeneration is dependent on the severity of the disturbance and on the time since stand initiation. Secondary disturbances of higher severity (i.e., killing >50% of the canopy trees) that occur in younger post-fire stands favor new establishment of lodgepole pine. In contrast, secondary disturbances of lower severity in older stands (>250 years) trigger a pulse of establishment of subalpine fir. The results of this study demonstrate that the high tree densities characteristic of lodgepole pine stands in the southern Rockies (southern Wyoming to northern New Mexico) are the result of dense regeneration following stand-replacing fires and that surface fires had little or no thinning effect on tree densities. Thus, current high stand densities in the study area are not the result of suppression of surface fires. Moreover, the strong pulses of regeneration following forest thinning by MPB and blowdowns imply that, depending on the degree of thinning, thinning prescriptions to reduce fuels in the lodgepole pine forest type may have the unintended consequence of increasing ladder fuels 15-20 years following treatments.


Ecosystem , Trees/growth & development , Abies/growth & development , Abies/physiology , Colorado , Conservation of Natural Resources , Fires , Pinus/growth & development , Pinus/physiology , Trees/physiology
...