Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Fish Shellfish Immunol ; 150: 109625, 2024 Jul.
Article En | MEDLINE | ID: mdl-38740231

The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.


Animal Feed , Diet , Fishes , Immunity, Mucosal , Animals , Fishes/immunology , Animal Feed/analysis , Diet/veterinary , Insecta/immunology
2.
Fish Shellfish Immunol ; 149: 109549, 2024 Jun.
Article En | MEDLINE | ID: mdl-38599365

The study was designed to investigate the effects of replacing fish oil by algal oil and rapeseed oil on histomorphology indices of the intestine, skin and gill, mucosal barrier status and immune-related genes of mucin and antimicrobial peptide (AMP) genes in Atlantic salmon (Salmo salar). For these purposes, Atlantic salmon smolts were fed three different diets. The first was a control diet containing fish oil but no Schizochytrium oil. In the second diet, almost 50 % of the fish oil was replaced with algal oil, and in the third diet, fish oil was replaced entirely with algal oil. The algal oil contained mostly docosahexaenoic acid (DHA) and some eicosapentaenoic acid (EPA). The study lasted for 49 days in freshwater (FW), after which some fish from each diet group were transferred to seawater (SW) for a 48-h challenge test at 33 ppt to test their ability to tolerate high salinity. Samples of skin, gills, and mid intestine [both distal (DI) and anterior (AI) portions of the mid intestine] were collected after the feeding trial in FW and after the SW-challenge test to assess the effects of the diets on the structure and immune functions of the mucosal surfaces. The results showed that the 50 % VMO (Veramaris® algal oil) dietary group had improved intestinal, skin, and gill structures. Principal component analysis (PCA) of the histomorphological parameters demonstrated a significant effect of the algal oil on the intestine, skin, and gills. In particular, the mucosal barrier function of the intestine, skin, and gills was enhanced in the VMO 50 % dietary group after the SW challenge, as evidenced by increased mucous cell density. Immunolabelling of heat shock protein 70 (HSP70) in the intestine (both DI and AI) revealed downregulation of the protein expression in the 50 % VMO group and a corresponding upregulation in the 100 % VMO group compared to 0 % VMO. The reactivity of HSP70 in the epithelial cells was higher after the SW challenge compared to the FW phase. Immune-related genes related to mucosal defense, such as mucin genes [muc2, muc5ac1 (DI), muc5ac1 (AI), muc5ac2, muc5b (skin), and muc5ac1 (gills)], and antimicrobial peptide genes [def3 (DI), def3 (AI), and cath1 (skin)] were significantly upregulated in the 50 % VMO group. PCA of gene expression demonstrated the positive influences on gene regulation in the 50 % VMO dietary group. In conclusion, this study demonstrated the positive effect of substituting 50 % of fish oil with algal oil in the diets of Atlantic salmon. The findings of histomorphometry, mucosal mapping, immunohistochemistry, and immune-related genes connected to mucosal responses all support this conclusion.


Animal Feed , Diet , Rapeseed Oil , Salmo salar , Animals , Salmo salar/immunology , Diet/veterinary , Rapeseed Oil/chemistry , Animal Feed/analysis , Mucous Membrane/immunology , Fish Oils/administration & dosage , Skin/immunology , Skin/drug effects , Seasons , Gills/immunology , Gills/drug effects , Intestines/drug effects , Intestines/immunology
3.
Antioxidants (Basel) ; 12(12)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38136186

Seaweed, also known as macroalgae, represents a vast resource that can be categorized into three taxonomic groups: Rhodophyta (red), Chlorophyta (green), and Phaeophyceae (brown). They are a good source of essential nutrients such as proteins, minerals, vitamins, and omega-3 fatty acids. Seaweed also contains a wide range of functional metabolites, including polyphenols, polysaccharides, and pigments. This study comprehensively discusses seaweed and seaweed-derived metabolites and their potential as a functional feed ingredient in aquafeed for aquaculture production. Past research has discussed the nutritional role of seaweed in promoting the growth performance of fish, but their effects on immune response and gut health in fish have received considerably less attention in the published literature. Existing research, however, has demonstrated that dietary seaweed and seaweed-based metabolite supplementation positively impact the antioxidant status, disease resistance, and stress response in fish. Additionally, seaweed supplementation can promote the growth of beneficial bacteria and inhibit the proliferation of harmful bacteria, thereby improving gut health and nutrient absorption in fish. Nevertheless, an important balance remains between dietary seaweed inclusion level and the resultant metabolic alteration in fish. This review highlights the current state of knowledge and the associated importance of continued research endeavors regarding seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant response, and gut microbiota composition in fish.

4.
Environ Sci Pollut Res Int ; 30(35): 83388-83400, 2023 Jul.
Article En | MEDLINE | ID: mdl-37340162

The current study was conducted to comprehend the variation of the growth pattern and the physiological status of Pangasius pangasius (Hamilton, 1822) reared in the pond from July 2021 to September 2021. A total of 90 brood individuals were collected from the Meghna River and studied for the present experiment. The overall growth pattern for P. pangasius was isometric (b = 3.00) in the Meghna River, while the male fish showed positive (b > 3.00) and the female showed a negative allometric growth pattern (b < 3.00). The Fulton's condition factor (KF) value was greater than 1, indicating a healthy population and a habitat with abundant food sources. Moreover, the KF value was found to be substantially related to total body mass. On the other hand, both sexes of P. pangasius had relative weight average values of more than 100, simply indicates the fish is naturally obese and has enough stored energy to maintain its physiology. The calculated form factors suggested an elongated body shape, which is typical of many riverine fishes. In addition, a small number of morphological traits varied significantly in the current study. Likewise, in the case of morphometric features, the principal component analysis showed a considerable degree of connectedness between the male and female individuals. The blood values showed no significant difference between the sexes. This might result from feeding fish the same kind of food and maintaining them in the same environment. However, the higher temperature might have caused slight blood abnormalities in both sexes. The current findings strongly support raising this fish in captivity and would offer useful information for fish farm owners, entrepreneurs, stakeholders, and other concerns in Bangladesh and surrounding nations.


Catfishes , Perciformes , Animals , Male , Female , Rivers , Biometry , Bangladesh
5.
Antioxidants (Basel) ; 11(8)2022 Aug 14.
Article En | MEDLINE | ID: mdl-36009291

The present study examined the efficacy of dietary selenium-enriched spirulina (SeE-SP) on growth performance, antioxidant response, liver and intestinal health, immunity and disease resistance of Asian seabass, Lates calcarifer. A total of 480 seabass juveniles with an initial weight of 9.22 ± 0.09 g/fish were randomly assigned to four dietary groups. The fish were fed a fishmeal protein replacement diets with SeE-SP at 5%, 10%, and 20%, namely SeE-SP5, SeE-SP10, and SeE-SP20, and a fishmeal-based diet as control for 8 weeks. The results indicated that seabass juveniles fed SeE-SP5 and SeE-SP10 diets grew at the same rate as the fish fed a fishmeal-based control diet after 8 weeks of feeding, while SeE-SP20 grew at a significantly lower rate than the control (p < 0.05). Although most of the measured biochemical parameters were not influenced by the Se-SP diets, serum antioxidant-enzyme glutathione peroxidase (GPx) and immunological indices, such as lysozyme activity and immunoglobulin-M, were found significantly higher in the SeE-SP5 and SeE-SP10 diets compared to control. In addition, the fish fed the SeE-SP5 diet showed significantly lower mortalities after the 14-day of bacterial challenge with V. harveyi. These outcomes indicated that up to 10% inclusion of SeE-SP in the diet of juvenile Asian seabass does not compromise growth, while SeE-SP5 enhanced disease resistance in juvenile seabass.

6.
Lett Appl Microbiol ; 75(4): 813-823, 2022 Oct.
Article En | MEDLINE | ID: mdl-35575585

The present study aimed to characterize and compare the skin and gut microbial communities of rohu at various post-harvest stages of consumption using quantitative real-time polymerase chain reaction and 16S rRNA-based amplicon sequencing. Real-time PCR amplification detected higher copy numbers for coliform bacteria-Escherichia coli, Salmonella enterica and Shigella spp. in the marketed fish-compared to fresh and frozen samples. The 16S rRNA data revealed higher alpha diversity measurements in the skin of fish from different retail markets of Dhaka city. Beta ordination revealed distinct clustering of bacterial OTUs for the skin and gut samples from three different groups. At the phylum level, Proteobacteria was most abundant in all groups except the Fusobacteria in the control fish gut. Although Aeromonas was found ubiquitous in all types of samples, diverse bacterial genera were identified in the marketed fish samples. Nonetheless, low species richness was observed for the frozen fish. Most of the differentially abundant bacteria in the skin samples of marketed fish are opportunistic human pathogens enriched at different stages of postharvest handling and processing. Therefore, considering the microbial contamination in the aquatic environment in Bangladesh, post-harvest handling should be performed with proper methods and care to minimize bacterial transmission into fish.


Cyprinidae , Microbiota , Animals , Bacteria/genetics , Bangladesh , Fresh Water , Humans , RNA, Ribosomal, 16S/genetics
7.
Heliyon ; 8(12): e12484, 2022 Dec.
Article En | MEDLINE | ID: mdl-36593835

To observe phenotypic differentiation among populations of Silond catfish, Silonia silondia (Hamilton 1822), a multilinear approach was used. A sum of 180 samples from three coastal rivers (Meghna, Payra, and Kirtankhola) of the Bangladesh coast were scooped up to comprehend whether distinct populations of S. silondia could be separated from one another due to adaptive divergence. The findings of this study reflect the first attempt to determine the stock structure, morphological characters, length-frequency distributions, length-length relationships, length-weight relationships, condition factors, relative weight, and form factor of S. silondia in the coastal rivers of Bangladesh. Important discrepancies between the means of the three populations were revealed using univariate and multivariate analysis of variance (p < 0.01). In principal component analysis, the first and second principal components described 83.546% and 4.302% of the total variation, respectively. The step-wise discriminant function analysis revealed two variables that separated the populations significantly. Besides, a dendrogram based on Euclidean distances accurately separated the populations. In a one-way analysis of variance study, nineteen out of twenty-one morphometric characters showed significant variation (p < 0.01)among three populations. The length parameters based on the length-length relationships of each sample were found to be highly significant (p < 0.01). The length-weight relationships exhibited that the b value fluctuated from 2.796 (Kirtankhola) to 3.498 (Meghna). The Fulton's condition factor was estimated in the current study for this species with an average value ranging from 1.12 to 1.35. The calculated form factor values of this species were 0.0016, 0.0054, and 0.0110 for Meghna, Payra, and Kirtankhola river, respectively. Therefore, this study will expectantly inform fisheries taxonomists about the species' current stock structure, intraspecific phenotypic divergences, and aid in its management and conservation in similar ecosystems in Bangladesh and around the world.

8.
Biology (Basel) ; 10(6)2021 Jun 07.
Article En | MEDLINE | ID: mdl-34200162

A feeding trial was conducted to test the effects of partial replacement of fishmeal (FM) protein and fish oil (FO) with partially defatted black soldier fly, Hermetia illucens insect protein, and oil, respectively, on growth performance, immune response, gut and skin barrier status, and flesh quality in juvenile barramundi. Four isonitrogenous and isocaloric diets used in the study were a control diet based on FM, 30% FM replaced with H. illucens protein (HiP), 30% FO replaced with H. illucens oil (HiO), and both 30% FM and 30% FO replaced with H. illucens protein and oil (HiPO). Diets were fed twice a day to satiety in triplicated groups of barramundi with an initial body weight of 1.74 ± 0.15 g per fish. At the end of the trial, growth and feed utilization indices were found insignificant (p > 0.05) between the test diets and control. A significant increase in bactericidal activity was observed in fish fed the HiP diet while serum lysozyme activity was unchanged. Stress-related heat shock proteins (HSP70 and HSP90) did not differ significantly among the test diets while immune-relevant genes (IL-1ß and IL-10) were significantly upregulated in HiP and HiOP groups. The number of mucin cells were increased in the gut and skin of HiP and HiOP fed fish when compared to the control diet. The total fatty acid compositions (∑SFA, ∑MUFA, ∑PUFA, ∑n-3, and ∑n-6) in the muscles of barramundi were not significantly influenced with H. illucens protein and oil diets when compared to the control.

9.
Microb Ecol ; 82(2): 299-308, 2021 Aug.
Article En | MEDLINE | ID: mdl-33432372

Feeding freshwater crayfish species with different diets not only affects the water quality but also induces the abundance of various microbial communities in their digestive tracts. In this context, very limited research has been undertaken to understand the impacts of various protein incorporated aqua-diets on the characteristics of water and its microbial communities. In this study, we have critically analysed the water quality parameters including pH, dissolved oxygen, nitrate, nitrite, ammonia and phosphorus, as well as bacterial communities under marron (Cherax cainii) aquaculture, fed fishmeal (FM) and poultry by-product meal (PBM)-based diets for 60 days. The results unveiled that over the time, feeding has significant impacts on organic waste accumulation, especially ammonia, nitrate, nitrite and phosphate, while no effects were observed on pH and dissolved oxygen. Analysis of 16S rRNA sequence data of water sample indicated significant (P < 0.05) shift of microbial abundance in post-fed FM and PBM water with the evidence of microbial transmission from the gut of marron. Post-fed marron resulted in a significant correlation of Hafnia, Enterobacter, Candidatus Bacilloplasma and Aquitella with the quality and microbial population of water. The results of this study generated valuable knowledge database of microbes-water relationship for better health management practices and production of marron aquaculture fed with FM and PBM diets in under restricted feeding regime with the feeding ratios provided.


Astacoidea , Microbiota , Animal Feed/analysis , Animals , Dietary Proteins , RNA, Ribosomal, 16S/genetics , Water Quality
10.
J Fish Dis ; 44(5): 591-599, 2021 May.
Article En | MEDLINE | ID: mdl-33210340

Vibriosis caused by luminous Vibrio species is one of the biggest challenges to shrimp industry in Bangladesh. This study aimed to characterize whole microbial communities from Vibrio-infected black tiger shrimp (Penaeus monodon) using 16S rRNA-based amplicon sequencing. A total of 36 disease-free and infected shrimp were collected from six different hatcheries in Bagerhat, Bangladesh. A final pool of 12 samples (n = 6) was created by homogenization of the hepatopancreas samples from three shrimps collected from each hatchery for the same group. The amplicon sequencing data revealed significant (p < .05) decrease of alpha diversity measurements and subsequent effects (p < .05) on the hepatopancreas microbiota in the infected group, compared to control shrimp. Proteobateria and Aeromonas were the most dominant bacteria at phylum and genus level in both groups and identified as core microbiota in the community. Two bacterial groups at phyla level and eight at genus level were found associated with the alteration of hepatopancreas microbial communities and associated gene functions in vibriosis-infected shrimp, revealed by differential abundance and KEGG pathway analysis. The overwhelming abundance of Citroibacter, Shewanella and Candidatus lineages in vibriosis-infected shrimp needs further investigations.


Genes, Bacterial , Penaeidae/microbiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Vibrio/genetics , Animals , RNA, Bacterial/metabolism , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, RNA , Vibrio/metabolism
11.
Fish Shellfish Immunol ; 108: 42-52, 2021 Jan.
Article En | MEDLINE | ID: mdl-33232807

Probiotic supplements are being used to improve the growth and immune performance of aquaculture species over the last couple of decades. In recent times, black soldier fly (BSF) is considered as one of the promising sources of alternative protein to fishmeal protein in aqua-diets. Since the freshwater crayfish, marron (Cherax cainii), a Western Australian's native and iconic freshwater crayfish species, grows fairly slow under commercial farming environment, this study was aimed to investigate the supplemental effect of BSF and BSF with probiotic bacteria Lactobacillus plantarum (BSFLP) on overall health and immune performance of marron after 56 days of feeding under laboratory conditions. The post-trial data revealed insignificant influences of any diets on growth performance, however, both BSF and BSFLP based diets significantly improved some haemolymph parameters and gut health of marron. High throughput sequence data revealed that both BSF and BSFLP diets significantly improved the diversity of microbial communities including some beneficial bacteria for crustaceans in the hindgut of marron. Further analysis showed that both BSF and BSFLP diets upregulated the expression of some genes in the gut tissue and haemocytes associated with the innate immune response of marron at 48 h post injection. The up-regulation of some immune genes in BSFLP diet group was found significantly linked to OTU abundance for Lactobacillus. The findings of this study could be helpful for improving overall health status of marron.


Astacoidea/immunology , Immunity, Innate , Lactobacillus plantarum/chemistry , Probiotics/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Diptera/chemistry , Diptera/growth & development , Diptera/microbiology , Dose-Response Relationship, Drug , Gastrointestinal Tract/physiology , Larva/chemistry , Larva/growth & development , Larva/microbiology , Probiotics/administration & dosage , Random Allocation
12.
PLoS One ; 15(11): e0242079, 2020.
Article En | MEDLINE | ID: mdl-33180835

The present study investigates if the total replacement of dietary fishmeal (FM) with poultry by-product meal (PBM), supplemented with methionine influences the muscle fatty acids composition, normal gut morphology, histological traits of the liver, muscle, and gill, liver enzymes, immune and antioxidant response, and stress-related gene in juvenile barramundi, Lates calcarifer in relation to growth and feed utilization. Barramundi (3.58±0.01g) were randomly distributed into six 300 L seawater recirculating tanks (25 fish/tank) and fed two formulated isonitrogenous and isolipidic diets for 6 weeks. The control diet had FM as the sole animal protein source, whereas other test diet had only PBM as an animal protein source. Dietary PBM affected the fish performance and feed utilization. Regarding muscle fatty acid profile, total saturated fatty acids and monounsaturated fatty acids elevated while total PUFA particularly n-3 LC-PUFA and EPA decreased in PBM fed fish than control diet fed fish. Liver, muscle, gill, and intestinal histology showed no obvious alteration in control diet fed fish, however, more lipid droplets and hepatic vacuolization in the liver, necrotic myotome in muscle, hyperplasia in secondary lamellae in gill and short and broken folds in the intestine were observed in PBM fed fish. Similar to light microscopy observation of intestinal morphology, the transmission electron microscopy (TEM) analysis revealed shorter and smaller microvilli in fish fed PBM. Histopathological alterations in the liver of PBM fed fish were further associated with the elevated levels of aspartate aminotransferase (AST) and glutamate dehydrogenase (GLDH) and the significant upregulation of stress-related genes, HSP70 and HSP90. Also, a negative influence on lysozyme activity, and antioxidant enzymatic activities were recorded in fish fed PBM. Overall, it can be concluded that a total substitution of FM protein by methionine supplemented PBM negatively influenced the growth performance, liver health, histological traits of different organs, immune and antioxidant response, and expression of stress-related genes in juvenile barramundi.


Animal Feed/analysis , Bass/physiology , Poultry Products/analysis , Animals , Antioxidants/analysis , Bass/growth & development , Bass/metabolism , Fatty Acids/analysis , Fish Proteins/metabolism , Gene Expression Regulation, Developmental , Immunity , Muscle, Skeletal/metabolism
13.
Sci Rep ; 10(1): 17091, 2020 10 13.
Article En | MEDLINE | ID: mdl-33051467

The search for suitable fish meal replacements in aqua-diets is a salient agenda in the constant effort of making aquaculture practices more sustainable. In this study, we tested four customised diets composed by systematic inclusion of pre-selected fish meal substitutes, lupin kernel meal, BSF meal, TH and PBM on growth, metabolism, cytokine profile, gut morphology and microbiota of juvenile Lates calcarifer. Five isoproteic and isoenergetic diets were prepared viz. FM100 as a control (without fish meal substitute), while FM75, FM50, FM25 and FM0 indicates replacement of fish meal (FM) at 25%, 50%, 75%, and 100%, respectively by a mixture of four different pre-selected non-fish meal (NFM) ingredients. Fish fed FM100, FM75, FM50, FM25 exhibited consistent growth and haematological response, while the fish fed no fishmeal (FM0) showed significant decline in final body weight (FBW) and specific growth rate (SGR). The poor growth performance was correlated with a decrease in villous width, microvilli height and goblet cells density. A significant shift in abundance profile of Psychrobacter in the gut microbial profile of fish fed FM50 was noticed compared to fish fed FM100. The results of qRT-PCR showed up-regulated expression of innate immune responsive genes in the FM50 group. The adverse impacts on growth performance and gut health of fish fed FM0 suggest that the complete substitution of fishmeal is not advisable and the inclusion range of these alternatives should be decided for a species only after examining their effect on maximal physiological performance.


Animal Feed , Perciformes/growth & development , Animals , Aquaculture/methods , Cytokines/blood , Dietary Proteins/administration & dosage , Gastrointestinal Microbiome , Perciformes/immunology , Perciformes/metabolism , Perciformes/microbiology
14.
Fish Shellfish Immunol ; 104: 567-578, 2020 Sep.
Article En | MEDLINE | ID: mdl-32562869

In an effort to reduce the use of fishmeal (FM), the effect of using protein from poultry by product meal (PBM) along with the supplementation of three different fish protein hydrolysate (FPH) including yellowtail kingfish, carp and tuna hydrolysate (designated as KH, CH and TH, respectively) were evaluated in juvenile barramundi for growth performance, fillet quality, mucosal immunity, serum biochemistry, immune response and infection against Vibrio harveyi. Fish were fed a FM based control diet + three isonitrogenous and isolipidic diets containing 90% of PBM protein supplemented with different types of hydrolysates: 90% PBM +10% KH (90PBM + KH), 90% PBM + 10% CH (90PBM + CH) and 90% PBM + 10% TH (90PBM + TH). Growth performance and indices were unaffected by the hydrolysate supplemented diets when compared to the control. FPH supplemented PBM diets resulted in improved muscle quality by improving poly unsaturated fatty acids (PUFA), ∑n-3, ∑n-6 and ∑n-9, and health related lipid indexes were not affected. The internal architecture of spleen and kidney were not altered by test diets whilst FPH supplemented PBM modulated acidic mucins in intestine and skin of fish. Improved infection rate in response to two weeks post infection with V. harveyi in the FPH supplemented diets was further associated with an increased serum immune response and a concomitant regulation of proinflammatory and inflammatory cytokines in the head kidney. Serum biochemistry including alanine transaminase (ALT), glutamate dehydrogenase (GLDH) and total bilirubin (TB) showed a decreasing trend both in pre-challenge and post-challenge barramundi fed FPH supplemented diets whereas cholesterol level decreased significantly in post-challenge groups fed 90PBM + KH and 90PBM + TH than pre-challenge barramundi. This study signifies that supplementation of 10% with different three FPH, hydrolysed by an alcalase® enzyme in PBM-based diets for barramundi could be good strategies to overcome the negative consequences triggered by animal by-product ingredients.


Immunity, Innate , Muscle, Skeletal/physiology , Perciformes/immunology , Protein Hydrolysates/metabolism , Serum/chemistry , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Immunity, Innate/drug effects , Muscle, Skeletal/drug effects , Protein Hydrolysates/administration & dosage , Random Allocation , Serum/drug effects
15.
PLoS One ; 15(4): e0232278, 2020.
Article En | MEDLINE | ID: mdl-32352997

Peanut (Arachis hypogaea) is mainly grown for oil extraction and the remaining oil-free seed referred as peanut meal (PM) leaves with high protein content which can be a possible substitute for fishmeal in aqua-diets. This study evaluates the suitability of three types of processed peanut seeds, namely untreated PM (UPM), fermented PM (FPM), and germinated PM (GPM) from peanut seeds to replace fishmeal in barramundi (Lates calcarifer) diets cultured under a commercial production environment. Nine formulated diets having 3 inclusion levels from the 3 different peanuts (15%, 30% and 60% fishmeal replacement) were evaluated against a control without PM. The performance of various types and levels of PMs was assessed by examining the growth, gut and liver condition and survival of fish after eight weeks of feeding the test diets. The immunological responses of juvenile barramundi were assessed by exposing the fish to the hypoxic conditions for 4 hours. The results showed that fermentation and germination significantly (P<0.05) reduced the tannins and alkaloid contents in the PMs. The fish fed 15% GPM diet grew faster and had higher survival than fish fed control diet, while fish fed diet including 60% GPM showed a significant reduction in growth and survival, and an increase in food conversion rate (FCR). FPM and UPM at any inclusion levels did not alter the growth, survival and FCR. Histology analysis revealed that fish fed 60% GPM and UPM showed higher amount of lipid droplets in liver, myodigeneration in fish muscle and a decrease number of acidic mucins in distal gut compare to all other test diets. Stress caused by reduced dissolved oxygen did not change the sodium, potassium, chlorides and alanine aminotransferase concentrations of plasma of fish fed any diet. However, the stress did increase plasma cortisol significantly (P<0.05) in fish fed 60% GPM, 30% and 60% UPM diets. These results suggest that the PMs can partly replace the fishmeal in juvenile barramundi diet and the processing further improves the PMs quality by reducing its antinutritional factors which in turn can increase either its inclusion level in the barramundi diets or improved growth and health status of the species.


Arachis/metabolism , Fermentation/physiology , Germination/physiology , Hypoxia/metabolism , Perciformes/growth & development , Seeds/metabolism , Animal Feed , Animals , Aquaculture/methods , Diet , Liver/metabolism , Meals
16.
Sci Rep ; 10(1): 5916, 2020 04 03.
Article En | MEDLINE | ID: mdl-32246011

This study aimed to investigate the combined effects of two most potent probiotic bacteria Lactobacillus acidophilus and Lactobacillus plantarum on overall health and immune status of freshwater crayfish, marron under laboratory conditions. A total of 36 marron were distributed into six different tanks and two different feeding groups, control and probiotic-fed group. After acclimation, control group was fed with basal diet while probiotic group was fed 109 CFU/mL per kg of bacterial supplemented feed for 60 days. The results showed no significant differences in weight gain, however, probiotic feed significantly enhanced some hemolymph parameters and biochemical composition of tail muscle. Histology data revealed better hepatopancreas health and higher microvilli counts in the marron gut fed probiotic diet. The probiotic bacteria triggered significant shift of microbial communities at different taxa level, mostly those reported as beneficial for crayfish. The probiotic diet also enriched the metabolic functions and genes associated with innate immune response of crayfish. Further correlation analysis revealed significant association of some taxa with increased activity for hemolymph and immune genes. Therefore, dietary Lactobacillus supplementation can modulate the overall health and immunity as well as gut microbial composition and interaction network between gut microbiota and immune system in crayfish.


Aquaculture , Astacoidea/physiology , Lactobacillus acidophilus , Lactobacillus plantarum , Probiotics/administration & dosage , Animal Feed , Animals , Astacoidea/microbiology , Australia , Gastrointestinal Microbiome/immunology , Health Status , Hemolymph/immunology , Immunity, Innate
17.
Front Nutr ; 7: 613158, 2020.
Article En | MEDLINE | ID: mdl-33521040

A 6-week feeding trial was performed to examine the effects of supplementing Hermetia illucens (HI) larvae meal when fishmeal (FM) was replaced with poultry by-product meal (PBM) in juvenile barramundi, Lates calcarifer diet. The effect was evaluated in terms of barramundi growth, filet quality, internal tissue structure, serum biochemistry, skin neutral mucins, immune response, and resistance to Vibrio harveyi. Three isonitrogenous (48% crude protein) and isolipidic (18% crude lipid) diets: an FM-based diet (control) and two diets containing 60 and 75% of PBM supplemented with 10% HI larvae (60PBM + HI and 75PBM + HI) were formulated. A total of 225 barramundi, with an average weight of 15.87 ± 0.14 g, were randomly distributed into nine tanks, each holding 25 fish. There were no significant effects of test diets on growth, but feeding HI-supplemented PBM diets significantly increased the survival rate. A significantly reduced intraperitoneal fat index in HI-supplemented-PBM-fed fish was correlated to a decreased size of peritoneal adipocytes. The observation of no histopathological alteration of the liver in the HI-supplemented-PBM-fed fish was further supported by significant alterations in serum biochemistry, in particular, a decreasing tendency of alanine transaminase, glutamate dehydrogenase, and total bilirubin. A 14-day challenge with V. harveyi indicated that HI-supplemented PBM diets reduced the infection rate in barramundi. After 24 h of infection, increased serum (lysozyme) and skin barrier functions, down-regulation of interleukin-1beta, and upregulation of interleukin-10 were found in HI-supplemented-PBM-fed fish.

18.
Fish Shellfish Immunol ; 97: 465-473, 2020 Feb.
Article En | MEDLINE | ID: mdl-31866445

The present study investigated the supplemental effects of tuna hydrolysate (TH) in poultry by-product meal (PBM) and dietary fishmeal (FM) diets on antioxidant enzymatic activities, gut microbial communities and expression of cytokine genes in the distal intestine of juvenile barramundi, Lates calcarifer. Fish were fed with fermented (FPBM + TH) as well as non-fermented PBM (PBM + TH) and FM (FMBD + TH) diets with 10% TH supplementation for 10 weeks. A basal diet prepared without TH supplementation served as control. The results showed that the activity of glutathione peroxidase was significantly higher in FPBM + TH than the control, while the malondialdehyde and catalase activities were unchanged. FPBM + TH diet significantly (P < 0.05) upregulated the pro-inflammatory cytokines including IL-1ß and TNF-α while considerable downregulation (P < 0.05) was observed in the mRNA expression levels of anti-inflammatory cytokine, IL-10 in the distal intestine of fish. The 16SrRNA analysis using V3-V4 region evidenced the ability of FPBM + TH to modulate the distal intestinal gut microbiome, augmenting the richness of Firmicutes and Fusobacteriaat at phylum level and Bacillus, Lactococcus and Cetobacterium at genus level. All these results have shown that fermented PBM with TH supplementation could improve the antioxidant capacity and inflammatory responses of juvenile barramundi while influencing the microbial communities at both phylum and genera levels.


Animal Feed/analysis , Antioxidants/metabolism , Cytokines/immunology , Fishes/immunology , Gastrointestinal Microbiome , Protein Hydrolysates/administration & dosage , Animals , Fermentation , Fisheries , Fishes/genetics , Glutathione Peroxidase/metabolism , Poultry Products , RNA, Messenger , Tuna
19.
Sci Rep ; 9(1): 16703, 2019 11 13.
Article En | MEDLINE | ID: mdl-31723163

This study investigated the effects of replacement of fishmeal (FM) with poultry by-product (PBM) protein, supplemented with black soldier fly, Hermetia illucens (HI) larvae on growth, histomormhology, immunity and resistance to Vibrio harveyi in juvenile barramundi. Two hundred and twenty five barramundi averaging 3.51 ± 0.03 g were randomly allocated into three groups and fed isonitrogenous and isocalorific diets containing different levels of PBM supplemented with HI as follows: Control (FM based diet), 45PBM + HI (45% PBM supplemented with 10% HI), and 90PBM + HI (90% PBM supplemented with 10% HI) for 6 weeks. Results showed that dietary inclusion of 45PBM + HI significantly improved the growth performance than control whereas growth inhibition occurred in the 90PBM + HI. The 45PBM + HI groups demonstrated significant increases in histometric measurements (villus and enterocyte width, and microvilli height) and acidic mucins. The impaired growth in 90PBM + HI groups was further associated with multifocal necrosis in the liver, an upregulation of the stress related genes (HSP70 and HSP90) and increase in the levels of liver enzymes. When 45PBM + HI was fed, survival against V. harveyi increased significantly and also an increase in serum immunity and immune-related genes in the head kidney was observed after infection.


Animal Feed/analysis , Diptera/physiology , Disease Resistance , Larva/physiology , Perciformes/anatomy & histology , Perciformes/immunology , Vibrio Infections/immunology , Animals , Dietary Proteins/administration & dosage , Perciformes/growth & development , Poultry Products , Vibrio/physiology , Vibrio Infections/virology
20.
PeerJ ; 7: e7553, 2019.
Article En | MEDLINE | ID: mdl-31523510

This study aimed to investigate the effects of Clostridium butyricum as a dietary probiotic supplement in fishmeal based diet on growth, gut microbiota and immune performance of marron (Cherax cainii). Marron were randomly distributed into two different treatment groups, control and probiotic fed group. After 42 days of feeding trial, the results revealed a significant (P < 0.05) increase in growth due to increase in number of moults in marron fed probiotics. The probiotic diet also significantly enhanced the total haemocyte counts (THC), lysozyme activity in the haemolymph and protein content of the tail muscle in marron. Compared to control, the 16S rRNA sequences data demonstrated an enrichment of bacterial diversity in the probiotic fed marron where significant increase of Clostridium abundance was observed. The abundance for crayfish pathogen Vibrio and Aeromonas were found to be significantly reduced post feeding with probiotic diet. Predicted metabolic pathway revealed an increased activity for the metabolism and absorption of carbohydrate, degradation of amino acid, fatty acid and toxic compounds, and biosynthesis of secondary metabolites. C. butyricum supplementation also significantly modulated the expression level of immune-responsive genes of marron post challenged with Vibrio mimicus. The overall results suggest that C. butyricum could be used as dietary probiotic supplement in marron aquaculture.

...