Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Respir Cell Mol Biol ; 66(3): 312-322, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861136

RESUMEN

Respiratory syncytial virus (RSV)-induced immunopathogenesis and disease severity in neonatal mice and human infants have been related to elevated pulmonary IL-33. Thus, targeting IL-33 has been suggested as a potential therapy for respiratory viral infections. Yet, the regulatory mechanisms on IL-33 during early life remain unclear. Here, using a neonatal mouse model of RSV, we demonstrate that IL-1ß positively regulates but is not required for RSV-induced expression of pulmonary IL-33 in neonatal mice early after the initial infection. Exogenous IL-1ß upregulates RSV-induced IL-33 expression by promoting the proliferation of IL-33+ lung epithelial stem/progenitor cells. These cells are exclusively detected in RSV-infected neonatal rather than adult mice, partially explaining the IL-1ß-independent IL-33 expression in RSV-infected adult mice. Furthermore, IL-1ß aggravates IL-33-mediated T-helper cell type 2-biased immunopathogenesis upon reinfection. Collectively, our study demonstrates that IL-1ß exacerbates IL-33-mediated RSV immunopathogenesis by promoting the proliferation of IL-33+ epithelial stem/progenitor cells in early life.


Asunto(s)
Interleucina-1beta/farmacología , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Humanos , Interleucina-33 , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/patología , Células Madre/patología
2.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L407-L418, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644311

RESUMEN

During the newborn period, intestinal commensal bacteria influence pulmonary mucosal immunology via the gut-lung axis. Epidemiological studies have linked perinatal antibiotic exposure in human newborns to an increased risk for bronchopulmonary dysplasia, but whether this effect is mediated by the gut-lung axis is unknown. To explore antibiotic disruption of the newborn gut-lung axis, we studied how perinatal maternal antibiotic exposure influenced lung injury in a hyperoxia-based mouse model of bronchopulmonary dysplasia. We report that disruption of intestinal commensal colonization during the perinatal period promotes a more severe bronchopulmonary dysplasia phenotype characterized by increased mortality and pulmonary fibrosis. Mechanistically, metagenomic shifts were associated with decreased IL-22 expression in bronchoalveolar lavage and were independent of hyperoxia-induced inflammasome activation. Collectively, these results demonstrate a previously unrecognized influence of the gut-lung axis during the development of neonatal lung injury, which could be leveraged to ameliorate the most severe and persistent pulmonary complication of preterm birth.


Asunto(s)
Antibacterianos/efectos adversos , Displasia Broncopulmonar/complicaciones , Lesión Pulmonar/inducido químicamente , Exposición Materna , Efectos Tardíos de la Exposición Prenatal/patología , Resistencia de las Vías Respiratorias/efectos de los fármacos , Animales , Animales Recién Nacidos , Líquido del Lavado Bronquioalveolar , Displasia Broncopulmonar/fisiopatología , Citocinas/metabolismo , Femenino , Granulocitos/metabolismo , Hiperoxia/complicaciones , Hiperoxia/fisiopatología , Inflamasomas/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/patología , Lesión Pulmonar/microbiología , Lesión Pulmonar/fisiopatología , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Fenotipo , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/microbiología , Análisis de Supervivencia , Remodelación Vascular/efectos de los fármacos
3.
Am J Respir Crit Care Med ; 201(3): 325-334, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31644878

RESUMEN

Rationale: Respiratory syncytial virus (RSV) causes significant morbidity and mortality in infants worldwide. Although T-helper type 2 (Th2) cell pathology is implicated in severe disease, the mechanisms underlying the development of immunopathology are incompletely understood.Objectives: We aimed to identify local immune responses associated with severe RSV in infants. Our hypothesis was that disease severity would correlate with enhanced Th2 cellular responses.Methods: Nasal aspirates were collected from infants hospitalized with severe (admitted to the pediatric ICU) or moderate (maintained in the general ward) RSV disease at 5 to 9 days after enrollment. The immune response was investigated by evaluating T-lymphocyte cellularity, cytokine concentration, and viral load.Measurements and Main Results: Patients with severe disease had increased proportions of CD8 (cluster of differentiation 8)-positive T cells expressing IL-4 (Tc2) and reduced proportions of CD8+ T cells expressing IFNγ (Tc1). Nasal aspirates from patients with severe disease had reduced concentrations of IL-17. Patients with greater frequencies of Tc1, CD8+ T cells expressing IL-17 (Tc17), and CD4+ T cells expressing IL-17 (Th17) had shorter durations of hospitalization.Conclusions: Severe RSV disease was associated with distinct T-cell profiles. Tc1, Tc17, and Th17 were associated with shorter hospital stay and may play a protective role, whereas Tc2 cells may play a previously underappreciated role in pathology.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Correlación de Datos , Femenino , Humanos , Lactante , Recién Nacido , Tiempo de Internación , Masculino , Índice de Severidad de la Enfermedad
4.
Sci Rep ; 8(1): 11034, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038294

RESUMEN

Respiratory syncytial virus (RSV) infection is the most frequent cause of hospitalization in infants and young children worldwide. Although mucosal RSV vaccines can reduce RSV disease burden, little is known about mucosal immune response capabilities in children. Neonatal or adult mice were infected with RSV; a subset of neonatal mice received interferon alpha (IFN-α) (intranasal) prior to RSV infection. B cells, B cell activating factor (BAFF) and IgA were measured by flow cytometry. RSV specific IgA was measured in nasal washes. Nasal associated lymphoid tissue (NALT) and lungs were stained for BAFF and IgA. Herein, we show in a mouse model of RSV infection that IFN-α plays a dual role as an antiviral and immune modulator and age-related differences in IgA production upon RSV infection can be overcome by IFN-α administration. IFN-α administration before RSV infection in neonatal mice increased RSV-specific IgA production in the nasal mucosa and induced expression of the B-cell activating factor BAFF in NALT. These findings are important, as mucosal antibodies at the infection site, and not serum antibodies, have been shown to protect human adults from experimental RSV infection.


Asunto(s)
Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Interferón Tipo I/metabolismo , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Animales , Factor Activador de Células B/metabolismo , Citometría de Flujo , Ratones , Ratones Endogámicos BALB C , Palivizumab/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico
5.
J Leukoc Biol ; 102(1): 153-161, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28389622

RESUMEN

Respiratory syncytial virus (RSV) is one of the leading causes of bronchiolitis in children, and severe RSV infection early in life has been associated with asthma development. Using a neonatal mouse model, we have shown that down-regulation of IL-4 receptor α (IL-4Rα) with antisense oligonucleotides in the lung during neonatal infection protected from RSV immunopathophysiology. Significant down-regulation of IL-4Rα was observed on pulmonary CD11b+ myeloid dendritic cells (mDCs) suggesting a role for IL-4Rα on mDCs in the immunopathogenesis of neonatal RSV infection. Here, we demonstrated that neonatal CD11b+ mDCs expressed higher levels of IL-4Rα than their adult counterparts. Because CD11b+ mDCs mainly present antigens to CD4+ T cells, we hypothesized that increased expression of IL-4Rα on neonatal CD11b+ mDCs was responsible for Th2 - biased RSV immunopathophysiology. Indeed, when IL-4Rα was selectively deleted from CD11b+ mDCs, the immunopathophysiology typically observed following RSV reinfection was ablated, including Th2 inflammation, airway-mucus hyperproduction, and pulmonary dysfunction. Further, overexpression of IL-4Rα on adult CD11b+ DCs and their adoptive transfer into adult mice was able to recapitulate the Th2-biased RSV immunopathology typically observed only in neonates infected with RSV. IL-4Rα levels on CD11c+ cells were inversely correlated with maturation status of CD11b+ mDCs upon RSV infection. Our data demonstrate that developmentally regulated IL-4Rα expression is critical for the maturity of pulmonary CD11b+ mDCs and the Th2-biased immunopathogenesis of neonatal RSV infection.


Asunto(s)
Células Dendríticas/inmunología , Receptores de Superficie Celular/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Células Th2/inmunología , Animales , Animales Recién Nacidos , Antígeno CD11b/genética , Antígeno CD11b/inmunología , Células Dendríticas/patología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptores de Superficie Celular/genética , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios/genética , Células Th2/patología
6.
Front Pediatr ; 4: 141, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28119902

RESUMEN

Both human and murine neonates are characteristically highly susceptible to bacterial infections. However, we recently discovered that neonatal mice are surprisingly highly resistant to oral infection with Yersinia enterocolitica. This resistance was linked with activation of both innate and adaptive responses, involving innate phagocytes, CD4+ cells, and B cells. We have now extended these studies and found that CD8+ cells also contribute importantly to neonatal protection from Y. enterocolitica. Strikingly, neonatal CD8+ cells in the mesenteric lymph nodes (MLN) are rapidly mobilized, increasing in proportion, number, and IFNγ production as early as 48 h post infection. This early activation appears to be critical for protection since B2m-/- neonates are significantly more susceptible than wt neonates to primary Y. enterocolitica infection. In the absence of CD8+ cells, Y. enterocolitica rapidly disseminated to peripheral tissues. Within 48 h of infection, both the spleens and livers of B2m-/-, but not wt, neonates became heavily colonized, likely leading to their deaths from sepsis. In contrast to primary infection, CD8+ cells were dispensable for the generation of immunological memory protective against secondary infection. These results indicate that CD8+ cells in the neonatal MLN contribute importantly to protection against an extracellular bacterial enteropathogen but, notably, they appear to act during the early innate phase of the immune response.

7.
Respir Res ; 16: 91, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26231396

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F). METHODS: Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection. RESULTS: The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8(+) T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8(+) T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2. CONCLUSIONS: Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8(+) T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection.


Asunto(s)
Comprensión , Modelos Animales de Enfermedad , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología , Virus Sincitiales Respiratorios , Animales , Animales Recién Nacidos , Chlorocebus aethiops , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/inmunología , Células Vero
8.
Infect Immun ; 82(2): 762-72, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24478090

RESUMEN

Neonatal animals are generally very susceptible to infection with bacterial pathogens. However, we recently reported that neonatal mice are highly resistant to orogastric infection with Yersinia enterocolitica. Here, we show that proinflammatory responses greatly exceeding those in adults arise very rapidly in the mesenteric lymph nodes (MLN) of neonates. High-level induction of proinflammatory gene expression occurred in the neonatal MLN as early as 18 h postinfection. Marked innate phagocyte recruitment was subsequently detected at 24 h postinfection. Enzyme-linked immunosorbent spot assay (ELISPOT) analyses indicated that enhanced inflammation in neonatal MLN is contributed to, in part, by an increased frequency of proinflammatory cytokine-secreting cells. Moreover, both CD11b(+) and CD11b(-) cell populations appeared to play a role in proinflammatory gene expression. The level of inflammation in neonatal MLN was also dependent on key bacterial components. Y. enterocolitica lacking the virulence plasmid failed to induce innate phagocyte recruitment. In contrast, tumor necrosis factor alpha (TNF-α) protein expression and neutrophil recruitment were strikingly higher in neonatal MLN after infection with a yopP-deficient strain than with wild-type Y. enterocolitica, whereas only modest increases occurred in adults. This hyperinflammatory response was associated with greater colonization of the spleen and higher mortality in neonates, while there was no difference in mortality among adults. This model highlights the dynamic levels of inflammation in the intestinal lymphoid tissues and reveals the protective (wild-type strain) versus harmful (yopP-deficient strain) consequences of inflammation in neonates. Moreover, these results reveal that the neonatal intestinal lymphoid tissues have great potential to rapidly mobilize innate components in response to infection with bacterial enteropathogens.


Asunto(s)
Ganglios Linfáticos/inmunología , Ganglios Linfáticos/microbiología , Linfadenitis Mesentérica/inmunología , Linfadenitis Mesentérica/microbiología , Yersiniosis/inmunología , Yersiniosis/patología , Yersinia enterocolitica/inmunología , Animales , Animales Recién Nacidos , Perfilación de la Expresión Génica , Inflamación , Ganglios Linfáticos/patología , Macrófagos/inmunología , Linfadenitis Mesentérica/patología , Ratones , Bazo/microbiología , Análisis de Supervivencia , Yersiniosis/microbiología
9.
Plant Biotechnol J ; 5(3): 402-12, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17359495

RESUMEN

We have engineered the chloroplast of eukaryotic algae to produce a number of recombinant proteins, including human monoclonal antibodies, but, to date, have achieved expression to only 0.5% of total protein. Here, we show that, by engineering the mammalian coding region of bovine mammary-associated serum amyloid (M-SAA) as a direct replacement for the chloroplast psbA coding region, we can achieve expression of recombinant protein above 5% of total protein. Chloroplast-expressed M-SAA accumulates predominantly as a soluble protein, contains the correct amino terminal sequence and has little or no post-translational modification. M-SAA is found in mammalian colostrum and stimulates the production of mucin in the gut, acting in the prophylaxis of bacterial and viral infections. Chloroplast-expressed and purified M-SAA is able to stimulate mucin production in human gut epithelial cell lines. As Chlamydomonas reinhardtii is an edible alga, production of therapeutic proteins in this organism offers the potential for oral delivery of gut-active proteins, such as M-SAA.


Asunto(s)
Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Proteína Amiloide A Sérica/genética , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/metabolismo , Genoma de Protozoos , Organismos Modificados Genéticamente/genética , Organismos Modificados Genéticamente/metabolismo , Fotosíntesis , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Proteína Amiloide A Sérica/química , Proteína Amiloide A Sérica/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA