Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Aging ; 4: 1258184, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38500495

RESUMEN

Changes in DNA methylation patterning have been reported to be a key hallmark of aged human skin. The altered DNA methylation patterns are correlated with deregulated gene expression and impaired tissue functionality, leading to the well-known skin aging phenotype. Searching for small molecules, which correct the aged methylation pattern therefore represents a novel and attractive strategy for the identification of anti-aging compounds. DNMT1 maintains epigenetic information by copying methylation patterns from the parental (methylated) strand to the newly synthesized strand after DNA replication. We hypothesized that a modest inhibition of this process promotes the restoration of the ground-state epigenetic pattern, thereby inducing rejuvenating effects. In this study, we screened a library of 1800 natural substances and 640 FDA-approved drugs and identified the well-known antioxidant and anti-inflammatory molecule dihydromyricetin (DHM) as an inhibitor of the DNA methyltransferase DNMT1. DHM is the active ingredient of several plants with medicinal use and showed robust inhibition of DNMT1 in biochemical assays. We also analyzed the effect of DHM in cultivated keratinocytes by array-based methylation profiling and observed a moderate, but significant global hypomethylation effect upon treatment. To further characterize DHM-induced methylation changes, we used published DNA methylation clocks and newly established age predictors to demonstrate that the DHM-induced methylation change is associated with a reduction in the biological age of the cells. Further studies also revealed re-activation of age-dependently hypermethylated and silenced genes in vivo and a reduction in age-dependent epidermal thinning in a 3-dimensional skin model. Our findings thus establish DHM as an epigenetic inhibitor with rejuvenating effects for aged human skin.

2.
NPJ Aging Mech Dis ; 7(1): 15, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075044

RESUMEN

The development of 'age clocks', machine learning models predicting age from biological data, has been a major milestone in the search for reliable markers of biological age and has since become an invaluable tool in aging research. However, beyond their unquestionable utility, current clocks offer little insight into the molecular biological processes driving aging, and their inner workings often remain non-transparent. Here we propose a new type of age clock, one that couples predictivity with interpretability of the underlying biology, achieved through the incorporation of prior knowledge into the model design. The clock, an artificial neural network constructed according to well-described biological pathways, allows the prediction of age from gene expression data of skin tissue with high accuracy, while at the same time capturing and revealing aging states of the pathways driving the prediction. The model recapitulates known associations of aging gene knockdowns in simulation experiments and demonstrates its utility in deciphering the main pathways by which accelerated aging conditions such as Hutchinson-Gilford progeria syndrome, as well as pro-longevity interventions like caloric restriction, exert their effects.

3.
Biofactors ; 41(6): 383-90, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648450

RESUMEN

Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity.


Asunto(s)
Antioxidantes/administración & dosificación , Metabolismo Energético/efectos de los fármacos , Piel/efectos de los fármacos , Ubiquinona/análogos & derivados , Administración Tópica , Antioxidantes/metabolismo , Línea Celular , Suplementos Dietéticos , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Piel/metabolismo , Piel/patología , Ubiquinona/administración & dosificación , Ubiquinona/metabolismo
4.
Angiogenesis ; 18(3): 361-71, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26018928

RESUMEN

Wound healing is a multistage process involving collaborative efforts of different cell types and distinct cellular functions. Among others, the high metabolic activity at the wound site requires the formation and sprouting of new blood vessels (angiogenesis) to ensure an adequate supply of oxygen and nutrients for a successful healing process. Thus, a cutaneous wound healing model was established to identify new factors that are involved in vascular formation and remodeling in human skin after embryonic development. By analyzing global gene expression of skin biopsies obtained from wounded and unwounded skin, we identified a small set of genes that were highly significant differentially regulated in the course of wound healing. To initially investigate whether these genes might be involved in angiogenesis, we performed siRNA experiments and analyzed the knockdown phenotypes using a scratch wound assay which mimics cell migration and proliferation in vitro. The results revealed that a subset of these genes influence cell migration and proliferation in primary human endothelial cells (EC). Furthermore, histological analyses of skin biopsies showed that two of these genes, ALBIM2 and TMEM121, are colocalized with CD31, a well known EC marker. Taken together, we identified new genes involved in endothelial cell biology, which might be relevant to develop therapeutics not only for impaired wound healing but also for chronic inflammatory disorders and/or cardiovascular diseases.


Asunto(s)
Regulación de la Expresión Génica , Neovascularización Fisiológica/genética , Piel/metabolismo , Cicatrización de Heridas , Biopsia , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Endoteliales/citología , Estudio de Asociación del Genoma Completo , Humanos , Inflamación , Microscopía Fluorescente , Oxígeno/química , Fenotipo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Interferente Pequeño/metabolismo , Regeneración , Piel/patología
5.
Nutr Metab (Lond) ; 7: 66, 2010 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-20687953

RESUMEN

BACKGROUND: The cellular and molecular mechanisms of adipose tissue biology have been studied extensively over the last two decades. Adipose tissue growth involves both an increase in fat cell size and the formation of mature adipocytes from precursor cells. To investigate how natural substances influence these two processes, we examined the effects of lotus leaf extract (Nelumbo nucifera-extract solution obtained from Silab, France) and L-carnitine on human preadipocytes and adipocytes. METHODS: For our in vitro studies, we used a lotus leaf extract solution alone or in combination with L-carnitine. Utilizing cultured human preadipocytes, we investigated lotus leaf extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. Studies on human adipocytes were performed aiming to elucidate the efficacy of lotus leaf extract solution to stimulate lipolytic activity. To further characterize lotus leaf extract solution-mediated effects, we determined the expression of the transcription factor adipocyte determination and differentiation factor 1 (ADD1/SREBP-1c) on the RNA- and protein level utilizing qRT-PCR and immunofluorescence analysis. Additionally, the effect of L-carnitine on beta-oxidation was analyzed using human preadipocytes and mature adipocytes. Finally, we investigated additive effects of a combination of lotus leaf extract solution and L-carnitine on triglyceride accumulation during preadipocyte/adipocyte differentiation. RESULTS: Our data showed that incubation of preadipocytes with lotus leaf extract solution significantly decreased triglyceride accumulation during adipogenesis without affecting cell viability. Compared to controls, adipocytes incubated with lotus leaf extract solution exhibited a significant increase in lipolysis-activity. Moreover, cell populations cultivated in the presence of lotus leaf extract solution showed a decrease in adipocyte differentiation capacity as indicated by a decrease in the ADD1/SREBP-1c signal. Importantly, our results demonstrated that a combination of lotus leaf extract solution and L-carnitine reduced triglyceride accumulation to a greater extent compared to incubation with either substance alone. CONCLUSIONS: Overall, our data demonstrate that a combination of lotus leaf extract and L-carnitine reduced triglyceride accumulation in human (pre)adipocytes by affecting different processes during the adipocyte life cycle. For this reason, this combination might represent a treatment option for obesity-related diseases.

6.
Nutr Metab (Lond) ; 6: 20, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19409077

RESUMEN

BACKGROUND: The dramatic increase in obesity-related diseases emphasizes the need to elucidate the cellular and molecular mechanisms underlying fat metabolism. To investigate how natural substances influence lipolysis and adipogenesis, we determined the effects of White Tea extract on cultured human subcutaneous preadipocytes and adipocytes. METHODS: For our in vitro studies we used a White Tea extract solution that contained polyphenols and methylxanthines. Utilizing cultured human preadipocytes we investigated White Tea extract solution-induced inhibition of triglyceride incorporation during adipogenesis and possible effects on cell viability. In vitro studies on human adipocytes were performed aiming to elucidate the efficacy of White Tea extract solution to stimulate lipolytic activity. To characterize White Tea extract solution-mediated effects on a molecular level, we analyzed gene expression of essential adipogenesis-related transcription factors by qRT-PCR and determined the expression of the transcription factor ADD1/SREBP-1c on the protein level utilizing immunofluorescence analysis. RESULTS: Our data show that incubation of preadipocytes with White Tea extract solution significantly decreased triglyceride incorporation during adipogenesis in a dose-dependent manner (n = 10) without affecting cell viability (n = 10). These effects were, at least in part, mediated by EGCG (n = 10, 50 µM). In addition, White Tea extract solution also stimulated lipolytic activity in adipocytes (n = 7). Differentiating preadipocytes cultivated in the presence of 0.5% White Tea extract solution showed a decrease in PPARγ, ADD1/SREBP-1c, C/EBPα and C/EBPδ mRNA levels. Moreover, the expression of the transcription factor ADD1/SREBP-1c was not only decreased on the mRNA but also on the protein level. CONCLUSION: White Tea extract is a natural source that effectively inhibits adipogenesis and stimulates lipolysis-activity. Therefore, it can be utilized to modulate different levels of the adipocyte life cycle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...