Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Total Environ ; 757: 143770, 2021 Feb 25.
Article En | MEDLINE | ID: mdl-33243508

This work studies the chlorination and monochloramination reaction kinetics of two phenazone-type drugs (phenazone - Phe and propyphenazone - PrPhe) and three metabolites of phenazone-type drugs (4-formylaminoantipyrine - FAA, 4-aminoantipyrine - AA and 4-acetoamidoantipyrine - AAA). Kinetics were faster with chlorine (apparent second-order constants between 100 and 66,500 times higher) than with monochloramine. For FAA and AAA, no significant reaction was observed during monochloramination. Further, apparent rate constants decreased as the pH increased from pH 5.7 to 8.3, except during chlorination of AA. The transformation products (TPs) formed were also elucidated by liquid chromatography-high resolution mass spectrometry. The main transformation pathway for Phe and PrPhe consisted of halogenations, hydroxylations and dealkylations, while AAA and FAA were firstly transformed to AA, then followed by pyrazole ring opening and hydroxylations. The extend of the reaction was also tested in real water samples, where, in general, slower reaction kinetics were obtained during monochloramination, while the chlorination reaction showed similar half-lives to ultrapure water. Finally, acute and chronic toxicity of the TPs were estimated using two quantitative structure-activity relationship (QSAR) software (ECOSAR and TEST), showing that some TPs could be more toxic than their precursor compounds.


Pharmaceutical Preparations , Water Pollutants, Chemical , Water Purification , Antipyrine/analysis , Chloramines , Chlorine , Halogenation , Kinetics , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
J Hazard Mater ; 385: 121590, 2020 03 05.
Article En | MEDLINE | ID: mdl-31784125

This works investigates the chlorination and bromination of two rubber and polymer related chemicals, which have emerged as relevant water contaminants, i.e. 1,3-di-o-tolylguanidine (DTG) and 1,3-diphenylguanidine (DPG). Kinetic constants at different pH values were obtained and modelled, taking into account the pKa values of DTG/DPG and HClO, showing that the maximum reaction rate (kapp > 104 M-1 s-1) is obtained at pH values 8.8 for DPG and 9.1 for DTG. Bromination is also very fast, although unlike chlorination, deviation from the model was observed at neutral pH, which was attributed to formation of metastable transformation product (TP). A total of 35 TPs, corresponding to halogenation, hydroxylation, formation of monophenylguanidine derivatives and cyclization reactions, were tentatively identified. Furthermore it was found that chloroform can be formed up to a 25% molar yield, while dichloroacetonitrile was formed into less than a 3% yield. Several ecotoxicological endpoints were predicted by quantitative structure-activity relationship models (QSAR) for the TPs, some of which were predicted to be more toxic than DPG/DTG. Also a chlorinated solution investigated by a Vibrio Fisheri acute toxicity test, confirmed that toxicity increases with chlorination.


Guanidines/chemistry , Water Pollutants, Chemical/chemistry , Animals , Bromine/chemistry , Chlorine/chemistry , Cyclization , Daphnia/drug effects , Guanidines/toxicity , Halogenation , Hydroxylation , Kinetics , Quantitative Structure-Activity Relationship , Rats , Tetrahymena pyriformis/drug effects , Vibrio/drug effects , Water Pollutants, Chemical/toxicity
...