Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Cells ; 12(15)2023 07 31.
Article En | MEDLINE | ID: mdl-37566058

The comet assay in Drosophila has been used in the last few years to study DNA damage responses (DDR) in different repair-mutant strains and to compare them to analyze DNA repair. We have used this approach to study interactions between DNA repair pathways in vivo. Additionally, we have implemented an ex vivo comet assay, in which nucleoids from treated and untreated cells were incubated ex vivo with cell-free protein extracts from individuals with distinct repair capacities. Four strains were used: wild-type OregonK (OK), nucleotide excision repair mutant mus201, dmPolQ protein mutant mus308, and the double mutant mus201;mus308. Methyl methanesulfonate (MMS) was used as a genotoxic agent. Both approaches were performed with neuroblasts from third-instar larvae; they detected the effects of the NER and dmPolQ pathways on the DDR to MMS and that they act additively in this response. Additionally, the ex vivo approach quantified that mus201, mus308, and the double mutant mus201;mus308 strains presented, respectively, 21.5%, 52.9%, and 14.8% of OK strain activity over MMS-induced damage. Considering the homology between mammals and Drosophila in repair pathways, the detected additive effect might be extrapolated even to humans, demonstrating that Drosophila might be an excellent model to study interactions between repair pathways.


Drosophila melanogaster , Drosophila , Humans , Animals , Comet Assay , Drosophila/genetics , Drosophila melanogaster/genetics , DNA Repair , DNA Damage , Methyl Methanesulfonate/pharmacology , Mammals/genetics
2.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35955923

A systematic investigation on the cellular uptake, intracellular dissolution, and in vitro biological effects of ultra-small (<10 nm) iron hydroxide adipate/tartrate coated nanoparticles (FeAT-NPs) was carried out in intestinal Caco-2, hepatic HepG2 and ovarian A2780 cells, and the nucleotide excision repair (NER) deficient GM04312 fibroblasts. Quantitative evaluation of the nanoparticles uptake, as well as their transformation within the cell cytosol, was performed by inductively coupled plasma mass spectrometry (ICP-MS), alone or in combination with high performance liquid chromatography (HPLC). The obtained results revealed that FeAT-NPs are effectively taken up in a cell type-dependent manner with a minimum dissolution after 3 h. These results correlated with no effects on cell proliferation and minor effects on cell viability and reactive oxygen species (ROS) production for all the cell lines under study. Moreover, the comet assay results revealed significant DNA damage only in GM04312 cells. In vivo genotoxicity was further studied in larvae from Drosophila melanogaster, using the eye-SMART test. The obtained results showed that FeAT-NPs were genotoxic only with the two highest tested concentrations (2 and 5 mmol·L−1 of Fe) in surface treatments. These data altogether show that these nanoparticles represent a safe alternative for anemia management, with high uptake level and controlled iron release.


Nanoparticles , Ovarian Neoplasms , Animals , Biotransformation , Caco-2 Cells , Cell Line, Tumor , Cell Survival , DNA Damage , Drosophila/metabolism , Drosophila melanogaster/metabolism , Female , Humans , Iron/pharmacology , Larva/metabolism , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry , Reactive Oxygen Species/metabolism
3.
Metallomics ; 9(5): 564-574, 2017 05 24.
Article En | MEDLINE | ID: mdl-28425536

Cisplatin, one of the most extensively used metallodrugs in cancer treatment, presents the important drawback of patient resistance. This resistance is the consequence of different processes including those preventing the formation of DNA adducts and/or their quick removal. Thus, a tool for the accurate detection and quantitation of cisplatin-induced adducts might be valuable for predicting patient resistance. To prove the validity of such an assumption, highly sensitive plasma mass spectrometry (ICP-MS) strategies were applied to determine DNA adduct levels and intracellular Pt concentrations. These two metal-relative parameters were combined with an evaluation of biological responses in terms of genomic stability (with the Comet assay) and cell cycle progression (by flow cytometry) in four human cell lines of different origins and cisplatin sensitivities (A549, GM04312, A2780 and A2780cis), treated with low cisplatin doses (5, 10 and 20 µM for 3 hours). Cell viability and apoptosis were determined as resistance indicators. Univariate linear regression analyses indicated that quantitation of cisplatin-induced G-G intra-strand adducts, measured 1 h after treatment, was the best predictor for viability and apoptosis in all of the cell lines. Multivariate linear regression analyses revealed that the prediction improved when the intracellular Pt content or the Comet data were included in the analysis, for all sensitive cell lines and for the A2780 and A2780cis cell lines, respectively. Thus, a reliable cisplatin resistance predictive model, which combines the quantitation of adducts by HPLC-ICP-MS, and their repair, with the intracellular Pt content and induced genomic instability, might be essential to identify early therapy failure.


Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Cisplatin/pharmacokinetics , DNA Adducts/analysis , DNA Adducts/genetics , Genomic Instability/drug effects , Humans , Mass Spectrometry , Neoplasms/genetics , Neoplasms/pathology
4.
Front Genet ; 5: 304, 2014.
Article En | MEDLINE | ID: mdl-25221574

The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has been used to analyze the genotoxicity and action mechanisms of different chemicals, demonstrating good sensitivity and proving its usefulness. Moreover, it is the only assay that can be used to analyze DNA repair in somatic cells in vivo, comparing the effects of chemicals in different repair strains, and to quantitate repair activities in vitro. Additionally, the comet assay in Drosophila, in vivo and in vitro, has been applied to study the influence of protein overexpression on genome integrity and degradation. Although the assay is well established, it could benefit from some research to determine optimal experimental design to standardize it, and then to allow comparisons among laboratories independently of the chosen cell type.

5.
J Nucleic Acids ; 20102010 Sep 23.
Article En | MEDLINE | ID: mdl-20936147

The D. melanogaster mus308 gene, highly conserved among higher eukaryotes, is implicated in the repair of cross-links and of O-ethylpyrimidine DNA damage, working in a DNA damage tolerance mechanism. However, despite its relevance, its possible role on the processing of different DNA ethylation damages is not clear. To obtain data on mutation frequency and on mutation spectra in mus308 deficient (mus308(-)) conditions, the ethylating agent diethyl sulfate (DES) was analysed in postmeiotic male germ cells. These data were compared with those corresponding to mus308 efficient conditions. Our results indicate that Mus308 is necessary for the processing of oxygen and N-ethylation damage, for the survival of fertilized eggs depending on the level of induced DNA damage, and for an influence of the DNA damage neighbouring sequence. These results support the role of mus308 in a tolerance mechanism linked to a translesion synthesis pathway and also to the alternative end-joinig system.

6.
Anal Bioanal Chem ; 390(1): 37-44, 2008 Jan.
Article En | MEDLINE | ID: mdl-17932658

The antitumoral effect of cisplatin [cis-diamminodichloroplatinum(II)] in mammals is related to its binding to DNA components. However, there is a lack of specific chemical methods to selectively detect those adducts formed in vivo at low concentrations. In this work, a new sensitive and selective method of determining cisplatin-DNA adducts based on the use of element-selective mass spectrometry is proposed, and the method is then applied to detect cisplatin adducts induced in vivo in somatic cells of Drosophila melanogaster. The bioanalytical strategy proposed here allows the determination of the most important DNA adduct formed between adjacent guanine units of the same DNA strand with cisplatin, and it is based on the coupling of capillary liquid chromatography (cap-LC) to inductively coupled plasma mass spectrometry (ICP-MS). This set-up allows the simultaneous monitoring of the Pt (from the drug) and P (from the DNA components) present in these adducts, once they have been cleaved by enzymatic hydrolysis of the DNA samples. Using this instrumental set-up, the adducts of cisplatin formed in vivo when D. melanogaster flies are exposed to different cisplatin concentrations can be detected and their concentration determined. The results obtained show a direct correlation between the concentration of cisplatin adducts, the induced genotoxic damage (measured as DNA strand breaks using the Comet assay) and the cisplatin concentration. [figure: see text] The work illustrates the complementary use of bioanalytical and biological information to study cisplatin interactions with DNA is vivo at biologically relevant concentrations of the drug.


Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Cisplatin/analysis , Cisplatin/chemistry , DNA Adducts/analysis , DNA Adducts/chemistry , Drosophila melanogaster/genetics , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Mutagens/toxicity , Animals , Comet Assay , Drosophila melanogaster/drug effects , Female , Male , Molecular Structure
7.
Mutat Res ; 545(1-2): 59-72, 2004 Jan 12.
Article En | MEDLINE | ID: mdl-14698417

In spite of differences between female and male germ cells, and although both of them contribute to the gene pool of future generations, most germ cell mutagenicity studies in higher eukaryotes have been carried out on males. To study the response of female germ cells to mutagen/carcinogen exposure, the mutagenicity of two model chemicals like diethyl sulfate (DES) and hexamethylphosphoramide (HMPA), and the monofunctional methylating chemotherapeutic drug streptozotocin (STZ), has been analysed on repair efficient females of Drosophila melanogaster. Results previously obtained with N-ethyl-N-nitrosourea (ENU), another model chemical, have also been included in the analysis. The activity of bypass tolerance mechanism (BTM; represented by the mus308 locus) and nucleotide excision repair (NER) on the removal of oxygen and nitrogen ethylations was studied by determining DES mutagenicity in NER deficient females, comparing it with existing results for ENU, and by analysing both chemicals on BTM deficient females. Results indicate that (1) all chemicals are mutagenic on repair efficient females; (2) a measure of mutagenic activity ranked from the lowest DES to STZ, HMPA, and ENU as the highest. This order correlates with the repair of the respectively induced DNA damages, and with the mutagenic and carcinogenic potency of these compounds, considering the toxicity of cross-linking agents; (3) NER efficiently repairs nitrogen ethylation damage and seems to contribute to the processing of oxygen damage in female germ cells; and (4) BTM is involved on the processing of oxygen ethylation damage, whereas the results on nitrogen ethylation are not clear. Finally, these results indicate that differences between male and female germ cells affect the response to chemical exposure, and therefore demonstrate the necessity of analysing also female cells in germinal mutagenicity studies. In addition, these studies can provide important mechanistic information about germ cell chemical mutagenesis, and even when the analysis of oogonia is not possible, since all female germ cells are pre-meiotic, studies of oocytes could be a model for pre-meiotic cells.


DNA Repair/physiology , Drosophila melanogaster/genetics , Mutagens/pharmacology , Mutation/drug effects , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Female , Oocytes/metabolism , Oogonia/metabolism
8.
Mutat Res ; 503(1-2): 11-9, 2002 Jun 19.
Article En | MEDLINE | ID: mdl-12052499

To check the possibilities of the recently developed comet assay, to be used in mechanistic studies in Drosophila melanogaster, neuroblast cells of third instar larvae are used to analyse in vivo, the effect of two repair deficient mutations: mus201, deficient on nucleotide excision repair, and mus308, deficient in a mechanism of damage bypass, on the genotoxicity of methyl methanesulphonate (MMS), ethyl methanesulphonate (EMS) and N-ethyl-N-nitrosourea (ENU). The obtained results reveal: (1) MMS-induced breaks are most probably consequence of N-alkylation damage mediated abasic (AP) site breakage; (2) MMS and at least part of the EMS induced damage leading to DNA strand breaks are efficiently repaired by the nucleotide excision repair mechanism; (3) ENU and part of EMS induced damage need a functional Mus308 protein to be processed, otherwise they can lead to DNA strand breaks. In addition, the results of this work confirm the validity of neuroblast cells to conduct the comet assay, and the usefulness of this assay in in vivo mechanistic studies related to DNA repair in D. melanogaster.


Comet Assay , DNA Polymerase I/genetics , DNA-Binding Proteins/genetics , Drosophila Proteins , Mutagens/toxicity , Animals , DNA Damage , DNA Repair , DNA Repair Enzymes , DNA-Directed DNA Polymerase , Drosophila melanogaster , Endonucleases , Ethyl Methanesulfonate/toxicity , Ethylnitrosourea/toxicity , Hydrogen-Ion Concentration , Methyl Methanesulfonate/toxicity , Nuclear Proteins , Transcription Factors
...