Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Endocr Soc ; 6(6): bvac053, 2022 Jun 01.
Article En | MEDLINE | ID: mdl-35528828

Context: Arginine-vasopressin and CRH act synergistically to stimulate secretion of ACTH. There is evidence that glucocorticoids act via negative feedback to suppress arginine-vasopressin secretion. Objective: Our hypothesis was that a postoperative increase in plasma copeptin may serve as a marker of remission of Cushing disease (CD). Design: Plasma copeptin was obtained in patients with CD before and daily on postoperative days 1 through 8 after transsphenoidal surgery. Peak postoperative copeptin levels and Δcopeptin values were compared among those in remission vs no remission. Results: Forty-four patients (64% female, aged 7-55 years) were included, and 19 developed neither diabetes insipidus (DI) or syndrome of inappropriate anti-diuresis (SIADH). Thirty-three had follow-up at least 3 months postoperatively. There was no difference in peak postoperative copeptin in remission (6.1 pmol/L [4.3-12.1]) vs no remission (7.3 pmol/L [5.4-8.4], P = 0.88). Excluding those who developed DI or SIADH, there was no difference in peak postoperative copeptin in remission (10.2 pmol/L [6.9-21.0]) vs no remission (5.4 pmol/L [4.6-7.3], P = 0.20). However, a higher peak postoperative copeptin level was found in those in remission (14.6 pmol/L [±10.9] vs 5.8 (±1.4), P = 0.03]) with parametric testing. There was no difference in the Δcopeptin by remission status. Conclusions: A difference in peak postoperative plasma copeptin as an early marker to predict remission of CD was not consistently present, although the data point to the need for a larger sample size to further evaluate this. However, the utility of this test may be limited to those who develop neither DI nor SIADH postoperatively.

2.
Clin Endocrinol (Oxf) ; 85(6): 845-851, 2016 Dec.
Article En | MEDLINE | ID: mdl-27293068

BACKGROUND: Germline mutations of the KCNJ5 gene encoding Kir3·4, a member of the inwardly rectifying K+ channel, have been identified in 'normal' adrenal glands, patients with familial hyperaldosteronism (FH) type III, aldosterone-producing adenomas (APAs) and sporadic cases of primary aldosteronism (PA). OBJECTIVE: To present two novel KCNJ5 gene mutations in hypertensive patients without PA, but with Adrenocorticotropic hormone (ACTH)-dependent aldosterone hypersecretion. DESIGN AND PATIENTS: Two hypertensive patients without PA, who exhibited enhanced ACTH-dependent response of aldosterone secretion, underwent genetic testing for the presence of the CYP11B1/CYP11B2 chimeric gene and KCNJ5 gene mutations. Genomic DNA was isolated from peripheral white blood cells, and the exons of the entire coding regions of the above genes were amplified and sequenced. Electrophysiological studies were performed to determine the effect of identified mutation(s) on the membrane reversal potentials. Structural biology studies were also carried out. RESULTS: Two novel germline heterozygous KCNJ5 mutations, p.V259M and p.Y348N, were detected in the two subjects. Electrophysiological studies showed that the Y348N mutation resulted in significantly less negative reversal potentials, suggesting loss of ion selectivity, while the V259M mutation did not affect the Kir3.4 current. In the mutated structural biology model, the N348 mutant resulted in significant loss of the ability for hydrogen bonding, while the M259 mutant was capable of establishing weaker interactions. The CYP11B1/CYP11B2 chimeric gene was not detected. CONCLUSIONS: These findings expand on the clinical spectrum of phenotypes associated with KCNJ5 mutations and implicate these mutations in the pathogenesis of hypertension associated with increased aldosterone response to ACTH stimulation.


Adrenocorticotropic Hormone/pharmacology , Aldosterone/metabolism , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , Germ-Line Mutation/physiology , Hypertension/etiology , Cytochrome P-450 CYP11B2/genetics , Electrophysiological Phenomena , Female , Genetic Association Studies , Humans , Hyperaldosteronism , Male , Middle Aged , Steroid 11-beta-Hydroxylase/genetics
3.
J Clin Endocrinol Metab ; 100(5): E710-9, 2015 May.
Article En | MEDLINE | ID: mdl-25695889

CONTEXT: Germline mutations in genes coding succinate dehydrogenase (SDH) subunits A, B, C, and D have been identified in familial paragangliomas (PGLs)/pheochromocytomas (PHEOs) and other tumors. We described a GH-secreting pituitary adenoma (PA) caused by SDHD mutation in a patient with familial PGLs. Additional patients with PAs and SDHx defects have since been reported. DESIGN: We studied 168 patients with unselected sporadic PA and with the association of PAs, PGLs, and/or pheochromocytomas, a condition we named the 3P association (3PAs) for SDHx germline mutations. We also studied the pituitary gland and hormonal profile of Sdhb(+/-) mice and their wild-type littermates at different ages. RESULTS: No SDHx mutations were detected among sporadic PA, whereas three of four familial cases were positive for a mutation (75%). Most of the SDHx-deficient PAs were either prolactinomas or somatotropinomas. Pituitaries of Sdhb(+/-) mice older than 12 months had an increased number mainly of prolactin-secreting cells and several ultrastructural abnormalities such as intranuclear inclusions, altered chromatin nuclear pattern, and abnormal mitochondria. Igf-1 levels of mutant mice tended to be higher across age groups, whereas Prl and Gh levels varied according to age and sex. CONCLUSION: The present study confirms the existence of a new association that we termed 3PAs. It is due mostly to germline SDHx defects, although sporadic cases of 3PAs without SDHx defects also exist. Using Sdhb(+/-) mice, we provide evidence that pituitary hyperplasia in SDHx-deficient cells may be the initial abnormality in the cascade of events leading to PA formation.


Adenoma/genetics , Adrenal Gland Neoplasms/genetics , Paraganglioma/genetics , Pheochromocytoma/genetics , Pituitary Neoplasms/genetics , Succinate Dehydrogenase/genetics , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , DNA Mutational Analysis , Female , Germ-Line Mutation , Humans , Male , Mice , Mice, Knockout , Middle Aged , Young Adult
4.
N Engl J Med ; 371(25): 2363-74, 2014 Dec 18.
Article En | MEDLINE | ID: mdl-25470569

BACKGROUND: Increased secretion of growth hormone leads to gigantism in children and acromegaly in adults; the genetic causes of gigantism and acromegaly are poorly understood. METHODS: We performed clinical and genetic studies of samples obtained from 43 patients with gigantism and then sequenced an implicated gene in samples from 248 patients with acromegaly. RESULTS: We observed microduplication on chromosome Xq26.3 in samples from 13 patients with gigantism; of these samples, 4 were obtained from members of two unrelated kindreds, and 9 were from patients with sporadic cases. All the patients had disease onset during early childhood. Of the patients with gigantism who did not carry an Xq26.3 microduplication, none presented before the age of 5 years. Genomic characterization of the Xq26.3 region suggests that the microduplications are generated during chromosome replication and that they contain four protein-coding genes. Only one of these genes, GPR101, which encodes a G-protein-coupled receptor, was overexpressed in patients' pituitary lesions. We identified a recurrent GPR101 mutation (p.E308D) in 11 of 248 patients with acromegaly, with the mutation found mostly in tumors. When the mutation was transfected into rat GH3 cells, it led to increased release of growth hormone and proliferation of growth hormone-producing cells. CONCLUSIONS: We describe a pediatric disorder (which we have termed X-linked acrogigantism [X-LAG]) that is caused by an Xq26.3 genomic duplication and is characterized by early-onset gigantism resulting from an excess of growth hormone. Duplication of GPR101 probably causes X-LAG. We also found a recurrent mutation in GPR101 in some adults with acromegaly. (Funded by the Eunice Kennedy Shriver National Institute of Child Health and Human Development and others.).


Acromegaly/genetics , Chromosome Duplication , Chromosomes, Human, X , Gigantism/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Female , Human Growth Hormone/metabolism , Humans , Infant , Male , Phenotype , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
5.
Blood ; 112(5): 1904-11, 2008 Sep 01.
Article En | MEDLINE | ID: mdl-18577711

Gene targeting experiments have shown that Delta-like 4 (Dll4) is a vascular-specific Notch ligand critical to normal vascular development. Recent studies have demonstrated that inhibition of Dll4/Notch signaling in tumor-bearing mice resulted in excessive, yet nonproductive tumor neovascularization and unexpectedly reduced tumor growth. Because nonfunctional blood vessels have the potential to normalize, we explored the alternative approach of stimulating Notch signaling in the tumor vasculature to inhibit tumor growth. Here we show that retrovirus-induced over-expression of Dll4 in tumor cells activates Notch signaling in cocultured endothelial cells and limits vascular endothelial growth factor (VEGF)-induced endothelial cell growth. Tumors produced in mice by injection of human and murine tumor cells transduced with Dll4 were significantly smaller, less vascularized and more hypoxic than controls, and displayed evidence of Notch activation. In addition, tumor blood perfusion was reduced as documented by vascular imaging. These results demonstrate that Notch activation in the tumor microenvironment reduces tumor neovascularization and blood perfusion, and suggest that Dll4-induced Notch activation may represent an effective therapeutic approach for the treatment of solid tumors.


Intercellular Signaling Peptides and Proteins/physiology , Neoplasms/blood supply , Neoplasms/physiopathology , Receptors, Notch/physiology , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID , Neoplasms/genetics , Neoplasms/pathology , Neovascularization, Pathologic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Transduction, Genetic
6.
Cancer Res ; 68(6): 1889-95, 2008 Mar 15.
Article En | MEDLINE | ID: mdl-18339870

Gene-targeting studies have shown that Delta-like 4 (Dll4) is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are not well defined. We generated primary human umbilical vascular endothelial cells that express Dll4 protein to study Dll4 function and previously showed that Dll4 down-regulates vascular endothelial growth factor (VEGF) receptor 2 and NRP1 expression and inhibits VEGF function. We now report that expression of Dll4 in endothelial cells inhibited attachment and migration to stromal-derived growth factor 1 (SDF1) chemokine. Cell surface, total protein, and mRNA levels of CXCR4, principal signaling receptor for SDF1, were significantly decreased in Dll4-transduced endothelial cells, attributable to a significant reduction of CXCR4 promoter activity. An immobilized recombinant extracellular portion of Dll4 (rhDLL4) was sufficient to down-regulate CXCR4 mRNA and protein, whereas protein levels of SDF1, VEGF, and RDC1 were unchanged. The gamma-secretase inhibitor L-685,458 significantly reconstituted CXCR4 mRNA in rhDLL4-stimulated endothelial cells. CXCR4 mRNA levels were significantly reduced in mouse xenografts of Dll4-transduced human gliomas compared with control gliomas, and vascular CXCR4 was not detected by immunohistochemistry in the enlarged vessels within the Dll4 gliomas. Thus, Dll4 may contribute to vascular differentiation and inhibition of the angiogenic response by regulating multiple receptor pathways.


Endothelial Cells/metabolism , Intercellular Signaling Peptides and Proteins/biosynthesis , Receptors, CXCR4/biosynthesis , Adaptor Proteins, Signal Transducing , Animals , Calcium-Binding Proteins , Cell Line, Tumor , Cell Movement/physiology , Chemokine CXCL12/metabolism , Chemokine CXCL12/pharmacology , Down-Regulation , Endothelial Cells/cytology , Female , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Notch/metabolism , Signal Transduction , Transfection
...