Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37763915

RESUMEN

Carbendazim, a fungicide widely used in agriculture, has been classified as a hazardous chemical by the World Health Organization due to its environmental persistence. It is prohibited in several countries; therefore, detecting it in food and environmental samples is highly necessary. A reliable, rapid, and low-cost method uses electrochemical sensors and biosensors, especially those modified with carbon-based materials with good analytical performance. In this review, we summarize the use of carbon-based electrochemical (bio)sensors for detecting carbendazim in environmental and food matrixes, with a particular interest in the role of carbon materials. Focus on publications between 2018 and 2023 that have been describing the use of carbon nanotubes, carbon nitride, graphene, and its derivatives, and carbon-based materials as modifiers, emphasizing the analytical performance obtained, such as linear range, detection limit, selectivity, and the matrix where the detection was applied.

2.
Food Chem ; 370: 131012, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34500293

RESUMEN

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Asunto(s)
Peumus , Animales , Antioxidantes/farmacología , Frutas , Humanos , Ratones , Extractos Vegetales/farmacología , Hojas de la Planta
3.
J Hazard Mater ; 379: 120746, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31276919

RESUMEN

Glyphosate is used extensively worldwide, but current evidence suggests detrimental effects on the environment, pollinators, and human health. Glyphosate adsorption kinetics and adsorption/desorption were studied through batch sorption experiments in ten typical volcanic ash-derived soils from Andisol and Ultisol orders. Two kinetic models were used to fit the experimental data: i. Models that allowed establishment of principally kinetic parameters and modeling of the adsorption process, and ii. Models described solute transport mechanisms commonly used for remediation purposes. Adsorption kinetic data were best fitted by the pseudo-second-order kinetic model and Two-Site Nonequilibrium model. These models suggest that mechanisms are complex due to rapid surface adsorption in ultisols with mass transfer controlling adsorption kinetics across the boundary layer, as indicated by the highhand lowt1/2values. High intraparticle diffusion into macropores and micropores was observed for Andisols. The Freundlich model accurately represented adsorption equilibrium data in all cases (R2 > 0.9580) with comparatively higher adsorption capacity on Andisols. Kf values (2.50-52.28 µg1-1/n mL1/n g-1) and hysteresis were significant in all studied soils. Taken together, these data suggest that Glyphosate may be adsorbed more on Andisol soils in comparison to Ultisols.

4.
Phys Chem Chem Phys ; 18(42): 29516-29525, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27747348

RESUMEN

The need of deeper insights regarding the inner working of catalysts represents a current challenge in the search of new ways to tune their activities towards new chemical transformations. Within this field, metallophthalocyanines-based (MPc) electrocatalysis has gained tremendous attention due to their versatility, low cost, great stability and excellent turn-over properties. In this concern, here we present a quantum chemical study of the formation of supramolecular complexes based on the adsorption of MPcs on gold substrates, and the effect of the substrate on their electrocatalytic properties. For this purpose, we used iron- (FePc), cobalt- (CoPc) and copper-phthalocyanines (CuPc). To model the gold surface we used two gold clusters of different sizes, given by Au26 and Au58 accounting for gold electrode Au(111) surface. Thus, both electronic and binding strength features of the adsorption process between the complexes were analyzed in detail in order to gain a deeper description of the nature of the MPc-Au(111) formation, by using Density Functional Theory (DFT) calculations, at the PBE and TPSS levels including the dispersive contribution according to the Grimme approach (D3). Our results show that dispersion forces rule the MPc-gold interaction, with binding strengths ranging between 61 and 153 kcal mol-1, in agreement to the reported experimental data. To provide a detailed picture of our findings we used the non-covalent interactions index (NCIs) analysis, which offers additional chemical insights regarding the forces that control their interaction strength. Finally, our calculations revealed that among the three MPcs, CuPc required less energy for its oxidation. However, the removal of the electron involves a tremendous decrease of the MPc-gold surface interaction strength thus suggesting its desorption, which would prevent the required reversibility of the redox reaction, explaining its low performance observed experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA