Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Science ; 384(6697): eadk9227, 2024 May 17.
Article En | MEDLINE | ID: mdl-38753786

Contemporary materials discovery requires intricate sequences of synthesis, formulation, and characterization that often span multiple locations with specialized expertise or instrumentation. To accelerate these workflows, we present a cloud-based strategy that enabled delocalized and asynchronous design-make-test-analyze cycles. We showcased this approach through the exploration of molecular gain materials for organic solid-state lasers as a frontier application in molecular optoelectronics. Distributed robotic synthesis and in-line property characterization, orchestrated by a cloud-based artificial intelligence experiment planner, resulted in the discovery of 21 new state-of-the-art materials. Gram-scale synthesis ultimately allowed for the verification of best-in-class stimulated emission in a thin-film device. Demonstrating the asynchronous integration of five laboratories across the globe, this workflow provides a blueprint for delocalizing-and democratizing-scientific discovery.

2.
Science ; 359(6373): 314-319, 2018 01 19.
Article En | MEDLINE | ID: mdl-29348235

Chemical manufacturing is often done at large facilities that require a sizable capital investment and then produce key compounds for a finite period. We present an approach to the manufacturing of fine chemicals and pharmaceuticals in a self-contained plastic reactionware device. The device was designed and constructed by using a chemical to computer-automated design (ChemCAD) approach that enables the translation of traditional bench-scale synthesis into a platform-independent digital code. This in turn guides production of a three-dimensional printed device that encloses the entire synthetic route internally via simple operations. We demonstrate the approach for the γ-aminobutyric acid receptor agonist, (±)-baclofen, establishing a concept that paves the way for the local manufacture of drugs outside of specialist facilities.


Chemistry Techniques, Synthetic/instrumentation , Chemistry Techniques, Synthetic/methods , Pharmaceutical Preparations/chemical synthesis , Printing, Three-Dimensional , Baclofen/chemical synthesis , GABA-B Receptor Agonists/chemical synthesis , Plastics
3.
Article En | MEDLINE | ID: mdl-28223393

The novel bacterial topoisomerase inhibitor class is an investigational type of antibacterial inhibitor of DNA gyrase and topoisomerase IV that does not have cross-resistance with the quinolones. Here, we report the evaluation of the in vitro properties of a new series of this type of small molecule. Exemplar compounds selectively and potently inhibited the catalytic activities of Escherichia coli DNA gyrase and topoisomerase IV but did not block the DNA breakage-reunion step. Compounds showed broad-spectrum inhibitory activity against a wide range of Gram-positive and Gram-negative pathogens, including biodefence microorganisms and Mycobacterium tuberculosis No cross-resistance with fluoroquinolone-resistant Staphylococcus aureus and E. coli isolates was observed. Measured MIC90 values were 4 and 8 µg/ml against a panel of contemporary multidrug-resistant isolates of Acinetobacter baumannii and E. coli, respectively. In addition, representative compounds exhibited greater antibacterial potency than the quinolones against obligate anaerobic species. Spontaneous mutation rates were low, with frequencies of resistance typically <10-8 against E. coli and A. baumannii at concentrations equivalent to 4-fold the MIC. Compound-resistant E. coli mutants that were isolated following serial passage were characterized by whole-genome sequencing and carried a single Arg38Leu amino acid substitution in the GyrA subunit of DNA gyrase. Preliminary in vitro safety data indicate that the series shows a promising therapeutic index and potential for low human ether-a-go-go-related gene (hERG) inhibition (50% inhibitory concentration [IC50], >100 µM). In summary, the compounds' distinct mechanism of action relative to the fluoroquinolones, whole-cell potency, low potential for resistance development, and favorable in vitro safety profile warrant their continued investigation as potential broad-spectrum antibacterial agents.


Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , DNA Topoisomerase IV/antagonists & inhibitors , Escherichia coli/drug effects , Mycobacterium tuberculosis/drug effects , Staphylococcus aureus/drug effects , Topoisomerase II Inhibitors/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Humans , Microbial Sensitivity Tests
...