Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 289(8): 5261-73, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24394409

RESUMEN

α-L-arabinofuranosidases are glycoside hydrolases that specifically hydrolyze non-reducing residues from arabinose-containing polysaccharides. In the case of arabinoxylans, which are the main components of hemicellulose, they are part of microbial xylanolytic systems and are necessary for complete breakdown of arabinoxylans. Glycoside hydrolase family 62 (GH62) is currently a small family of α-L-arabinofuranosidases that contains only bacterial and fungal members. Little is known about the GH62 mechanism of action, because only a few members have been biochemically characterized and no three-dimensional structure is available. Here, we present the first crystal structures of two fungal GH62 α-L-arabinofuranosidases from the basidiomycete Ustilago maydis (UmAbf62A) and ascomycete Podospora anserina (PaAbf62A). Both enzymes are able to efficiently remove the α-L-arabinosyl substituents from arabinoxylan. The overall three-dimensional structure of UmAbf62A and PaAbf62A reveals a five-bladed ß-propeller fold that confirms their predicted classification into clan GH-F together with GH43 α-L-arabinofuranosidases. Crystallographic structures of the complexes with arabinose and cellotriose reveal the important role of subsites +1 and +2 for sugar binding. Intriguingly, we observed that PaAbf62A was inhibited by cello-oligosaccharides and displayed binding affinity to cellulose although no activity was observed on a range of cellulosic substrates. Bioinformatic analyses showed that UmAbf62A and PaAbf62A belong to two distinct subfamilies within the GH62 family. The results presented here provide a framework to better investigate the structure-function relationships within the GH62 family.


Asunto(s)
Proteínas Fúngicas/química , Glicósido Hidrolasas/química , Familia de Multigenes , Podospora/enzimología , Ustilago/enzimología , Arabinosa/metabolismo , Calorimetría , Dominio Catalítico , Celulosa/metabolismo , Cristalografía por Rayos X , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Cinética , Modelos Moleculares , Filogenia
2.
J Biotechnol ; 174: 64-72, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24440633

RESUMEN

To understand structure-function relationships in the N-terminal region of GH11 xylanases, the 17 N-terminal amino acids of the GH11 xylanase from Neocallimastix patriciarum (Np-Xyn) have been grafted onto the N-terminal extremity of the untypically short GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn), creating a hybrid enzyme denoted NTfus. The hybrid xylanase displayed properties (pH and temperature optima) similar to those of the parental enzyme, although thermostability was lowered, with the Tm value, being reduced by 5°C. Kinetic assays using oNP-Xylo-oligosaccharides (DP2 and 3) indicated that the N-extension did not procure more extensive substrate binding, even when further mutagenesis was performed to promote this. However, these experiments confirmed weak subsite -3 for both NTfus and the parental enzyme. The catalytic efficiency of NTfus was shown to be 17% higher than that of the parental enzyme on low viscosity wheat arabinoxylan and trials using milled wheat straw as the substrate revealed that NTfus released more substituted oligosaccharide products (Xyl/Ara=8.97±0.13 compared to Xyl/Ara=9.70±0.21 for the parental enzyme), suggesting that the hybrid enzyme possesses wider substrate selectivity. Combining either the parental enzyme or NTfus with the cellulolytic cocktail Accellerase 1500 boosted the impact of the latter on wheat straw, procuring yields of solubilized xylose and glucose of 23 and 24% of theoretical yield, respectively, thus underlining the benefits of added xylanase activity when using this cellulase cocktail. Overall, in view of the results obtained for NTfus, we propose that the N-terminal extension leads to the modification of a putative secondary substrate binding site, a hypothesis that is highly consistent with previous data.


Asunto(s)
Bacillus/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Neocallimastix/genética , Secuencia de Aminoácidos , Bacillus/química , Bacillus/clasificación , Dominio Catalítico , Endo-1,4-beta Xilanasas/genética , Estabilidad de Enzimas , Evolución Molecular , Proteínas Fúngicas/genética , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Neocallimastix/clasificación , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
3.
Biotechnol Biofuels ; 5(1): 3, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22244361

RESUMEN

BACKGROUND: Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of considerable importance for second-generation biorefining. To address this problem, and also to gain greater understanding of structure-function relationships, especially related to xylanase action on complex biomass, we have implemented a combinatorial strategy to engineer the GH11 xylanase from Thermobacillus xylanilyticus (Tx-Xyn). RESULTS: Following in vitro enzyme evolution and screening on wheat straw, nine best-performing clones were identified, which display mutations at positions 3, 6, 27 and 111. All of these mutants showed increased hydrolytic activity on wheat straw, and solubilized arabinoxylans that were not modified by the parental enzyme. The most active mutants, S27T and Y111T, increased the solubilization of arabinoxylans from depleted wheat straw 2.3-fold and 2.1-fold, respectively, in comparison to the wild-type enzyme. In addition, five mutants, S27T, Y111H, Y111S, Y111T and S27T-Y111H increased total hemicellulose conversion of intact wheat straw from 16.7%tot. xyl (wild-type Tx-Xyn) to 18.6% to 20.4%tot. xyl. Also, all five mutant enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 1500), thus procuring increases in overall wheat straw hydrolysis. CONCLUSIONS: Analysis of the results allows us to hypothesize that the increased hydrolytic ability of the mutants is linked to (i) improved ligand binding in a putative secondary binding site, (ii) the diminution of surface hydrophobicity, and/or (iii) the modification of thumb flexibility, induced by mutations at position 111. Nevertheless, the relatively modest improvements that were observed also underline the fact that enzyme engineering alone cannot overcome the limits imposed by the complex organization of the plant cell wall and the lignin barrier.

4.
Protein Expr Purif ; 64(1): 39-46, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18996486

RESUMEN

This report describes the first purification procedure of the human full-length N Oct-3 protein in amounts suitable for structural studies and proteomic investigations. N Oct-3 is a transcription factor member of the POU protein family. It possesses a large N-terminal transactivation domain and a DNA-binding domain (DBD) which is composed of two subdomains, POUs and POUh, which are joined by a linker peptide. N Oct-3 is a master gene for central nervous system development but also for melanoma progression. Previous structural studies have all been performed using N Oct-3 DBD only. In this study, the full-length N Oct-3 protein was bacterially expressed and purified to homogeneity. The purified protein gave a single band at approximately 53 kDa on SDS-PAGE, while cDNA sequence analysis revealed a calculated molecular mass of 47 kDa confirmed by mass spectroscopy. Size-exclusion chromatography experiments indicated that in solution, full-length N Oct-3 was a monomer. Circular dichroïsm and intrinsic tryptophan fluorescence showed that full-length N Oct-3 was folded, with a significant alpha-helix content probably located in its DBD. Comparison with the purified N Oct-3 DBD demonstrated that, at least in vitro, the affinity of the protein for its DNA targets was similar. This suggests that the transactivation domain of N Oct-3 was not involved in N Oct-3 DNA interaction.


Asunto(s)
Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/aislamiento & purificación , Proteínas de Homeodominio/metabolismo , Melanoma/genética , Factores del Dominio POU/aislamiento & purificación , Factores del Dominio POU/metabolismo , Secuencia de Aminoácidos , Fenómenos Biológicos , ADN Complementario/química , ADN Complementario/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Humanos , Hidrólisis , Datos de Secuencia Molecular , Peso Molecular , Factores del Dominio POU/química , Factores del Dominio POU/genética , Fragmentos de Péptidos/química , Plásmidos , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA