Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 13(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34444909

RESUMEN

Glucosinolates (GLS) and their derivatives are secondary plant metabolites abundant in Brassicaceae. Due to the enzymatic reaction between GLS and myrosinase enzyme, characteristic compounds with a pungent taste are formed, used by plants to defend themselves against insect herbivores. These GLS derivatives have an important impact on human health, including anti-inflammation and anti-cancer effects. However, GLS derivatives' formation needs previous enzymatic reactions catalyzed by myrosinase enzyme. Many of the brassica-based foods are processed at a high temperature that inactivates enzymes, hindering its bioavailability. In the last decade, several studies showed that the human gut microbiome can provide myrosinase activity that potentially can raise the beneficial effects of consumption of vegetables rich in GLS. The variability of the human gut microbiome (HGM) in human populations and the diverse intake of GLS through the diet may lead to greater variability of the real dose of pro-healthy compounds absorbed by the human body. The exploitation of the genetic and biochemical potential of HGM and correct ecological studies of both isolated strains and mixed population are of great interest. This review focuses on the most recent advances in this field.


Asunto(s)
Brassica/química , Microbioma Gastrointestinal/fisiología , Glucosinolatos/metabolismo , Antiinflamatorios/farmacocinética , Antineoplásicos/farmacocinética , Disponibilidad Biológica , Manipulación de Alimentos , Glicósido Hidrolasas/metabolismo , Calor/efectos adversos , Humanos , Gusto , Verduras/química
2.
Molecules ; 26(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671275

RESUMEN

Oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.) have long been known for their organoleptic properties. Both plants are widely used in cuisine worldwide in fresh and dried form and as a pharmaceutical raw material. The study aimed to assess if the type of cultivation influenced chosen chemical parameters (total polyphenols by Folin-Ciocalteu method; carotenoids and chlorophyll content by Lichtenthaler method), antimicrobial activity (with chosen reference microbial strains) and shaped cytotoxicity (with L929 mouse fibroblasts cell line) in water macerates of dry oregano and thyme. Polyphenols content and antimicrobial activity were higher in water macerates obtained from conventional cultivation (independently from herb species), unlike the pigments in a higher amount in macerates from organic herbs cultivation. Among all tested macerates stronger antimicrobial properties (effective in inhibiting the growth of Pseudomonas aeruginosa, Bacillus cereus and Salmonella enteritidis) and higher cytotoxicity (abilities to diminish the growth of L929 fibroblasts cytotoxicity) characterized the conventionally cultivated thyme macerate.


Asunto(s)
Agricultura , Carotenoides/análisis , Clorofila/análisis , Fenoles/análisis , Agua/química , Animales , Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Ratones , Pruebas de Sensibilidad Microbiana , Origanum/química , Extractos Vegetales , Polifenoles/análisis , Thymus (Planta)/química
3.
Crit Rev Food Sci Nutr ; 61(15): 2544-2571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32584172

RESUMEN

The present study is a systematic review of the scientific literature reporting content, composition and biosynthesis of glucosinolates (GLS), and their derivative compounds in Brassica family. An amended classification of brassica species, varieties and their GLS content, organized for the different plant organs and in uniformed concentration measure unit, is here reported for the first time in a harmonized and comparative manner. In the last years, the studies carried out on the effect of processing on vegetables and the potential benefits for human health has increased rapidly and consistently the knowledge on the topic. Therefore, there was the need for an updated revision of the scientific literature of pre- and post-harvest modifications of GLS content, along with the role of gut microbiota in influencing their bioavailability once they are ingested. After analyzing and standardizing over 100 articles and the related data, the highest GLS content in Brassica, was declared in B. nigra (L.) W. D. J. Koch (201.95 ± 53.36 µmol g-1), followed by B. oleracea Alboglabra group (180.9 ± 70.3 µmol g-1). The authors also conclude that food processing can influence significantly the final content of GLS, considering the most popular methods: boiling, blanching, steaming, the latter can be considered as the most favorable to preserve highest level of GLS and their deriviatives. Therefore, a mild-processing strategic approach for GLS or their derivatives in food is recommended, in order to minimize the loss of actual bioactive impact. Finally, the human gut microbiota is influenced by Brassica-rich diet and can contribute in certain conditions to the increasing of GLS bioavailability but further studies are needed to assess the actual role of microbiomes in the bioavailability of healthy glucosinolate derivatives.


Asunto(s)
Brassica , Microbioma Gastrointestinal , Manipulación de Alimentos , Glucosinolatos/análisis , Humanos , Verduras
4.
J Sci Food Agric ; 99(6): 2763-2774, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30430568

RESUMEN

BACKGROUND: Accumulation and stability of tomato lycopene markedly depends on the cultivar, plant growing and storage conditions. To estimate lycopene in open-field cultivated processing and fresh market tomatoes, we used a calibrated spectral reflectance portable sensor. RESULTS: Lycopene accumulation in fruits attached to the plant, starting from the Green ripening stage, followed a sigmoidal function. It was faster and reached higher levels in processing (cv. Calista) than fresh market (cv. Volna) tomatoes (90 and 62 mg kg-1 fresh weight, respectively). During storage at 12, 20 and 25 °C, Red tomatoes retained about 90% of harvest lycopene for three weeks. Pink tomatoes increased lycopene during the first week of storage, but never reached the lycopene values of Red tomatoes ripened on the vine. Storability at 12 °C retaining the highest quality in red tomatoes was limited to 14 and 7 days for Calista and Volna cultivars, respectively. CONCLUSION: Significant differences in lycopene accumulation and stability between processing and fresh market tomatoes were established by examining with time the very same fruits by a non-destructive optical tool. It can be useful in agronomical and post-harvest physiological studies and can be of interest for producers oriented to the niche nutraceutical market. © 2018 Society of Chemical Industry.


Asunto(s)
Frutas/química , Licopeno/química , Solanum lycopersicum/química , Carotenoides/análisis , Manipulación de Alimentos , Almacenamiento de Alimentos , Óptica y Fotónica
5.
J Agric Food Chem ; 66(18): 4748-4757, 2018 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-29677447

RESUMEN

Reflectance spectroscopy represents a useful tool for the nondestructive assessment of tomato lycopene, even in the field. For this reason, a compact, low-cost, light emitting diode-based sensor has been developed to measure reflectance in the 400-750 nm spectral range. It was calibrated against wet chemistry and evaluated by partial least squares (PLS) regression analyses. The lycopene prediction models were defined for two open-field cultivated red-tomato varieties: the processing oblong tomatoes of the cv. Calista (average weight: 76 g) and the fresh-consumption round tomatoes of the cv. Volna (average weight: 130 g), over a period of two consecutive years. The lycopene prediction models were dependent on both cultivar and season. The lycopene root mean square error of prediction produced by the 2014 single-cultivar calibrations validated on the 2015 samples was large (33 mg kg-1) in the Calista tomatoes and acceptable (9.5 mg kg-1) in the Volna tomatoes. A more general bicultivar and biyear model could still explain almost 80% of the predicted lycopene variance, with a relative error in red tomatoes of less than 20%. In 2016, the in-field applications of the multiseasonal prediction models, built with the 2014 and 2015 data, showed significant ( P < 0.001) differences in the average lycopene estimated in the crop on two sampling dates that were 20 days apart: on August 19 and September 7, 2016, the lycopene was 98.9 ± 9.3 and 92.2 ± 10.8 mg kg-1 FW for cv. Calista and 54.6 ± 13.2 and 60.8 ± 6.8 mg kg-1 FW for cv. Volna. The sensor was also able to monitor the temporal evolution of lycopene accumulation on the very same fruits attached to the plants. These results indicated that a simple, compact reflectance device and PLS analysis could provide adequately precise and robust (through-seasons) models for the nondestructive assessment of lycopene in whole tomatoes. This technique could guarantee tomatoes with the highest nutraceutical value from the production, during storage and distribution, and finally to consumers.


Asunto(s)
Carotenoides/análisis , Frutas/química , Solanum lycopersicum/crecimiento & desarrollo , Antioxidantes/análisis , Antioxidantes/metabolismo , Carotenoides/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Licopeno , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA