Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
1.
J Environ Sci (China) ; 148: 283-297, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095165

RESUMEN

In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.


Asunto(s)
Restauración y Remediación Ambiental , Restauración y Remediación Ambiental/métodos , Catálisis , Energía Solar , Luz Solar , Semiconductores , Energía Renovable , Procesos Fotoquímicos
2.
Nat Commun ; 15(1): 7395, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191798

RESUMEN

Dissipation and the accompanying fluctuations are often seen as detrimental for quantum systems since they are associated with fast relaxation and loss of phase coherence. However, it has been proposed that a pure state can be prepared if external noise induces suitable downwards transitions, while exciting transitions are blocked. We demonstrate such a refrigeration mechanism in a cavity optomechanical system, where we prepare a mechanical oscillator in its ground state by injecting strong electromagnetic noise at frequencies around the red mechanical sideband of the cavity. The optimum cooling is reached with a noise bandwidth smaller than but on the order of the cavity decay rate. At higher bandwidths, cooling is less efficient as suitable transitions are not effectively activated. In the opposite regime where the noise bandwidth becomes comparable to the mechanical damping rate, damping follows the noise amplitude adiabatically, and the cooling is also suppressed.

3.
Heliyon ; 10(15): e35555, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170172

RESUMEN

This study explores how machining parameters affect Surface Roughness (SR), Tool Wear Rate (TWR), and Material Removal Rate (MRR) during Electrical Discharge Machining (EDM) of a hybrid aluminum metal matrix composite (AMMC). The composite includes 6 % Silicon carbide (SiC) and 6 % Boron carbide (B4C) in an Aluminum 7075 (Al7075) matrix. A combined optimization approach was used to balance these factors, evaluating Pulse ON time, Current, Voltage, and Pulse OFF time. Response Surface Methodology (RSM) optimized single responses, while multi-response optimization employed a hybrid method combining the Entropy Weight Method (EWM), Taguchi approach, TOPSIS, and GRA. Analysis of Variance (ANOVA) assessed parameter significance, revealing substantial impacts on SR, MRR, and EWR. Based on TOPSIS and GRA, optimized parameters achieved a desirable balance: high MRR (0.4172, 0.5240 mm³/min), minimal EWR (0.0068, 0.0103 mm³/min), and acceptable SR (10.3877, 9.1924 µm) based on EWM-weighted priorities. Confirmation experiments validated a 15 % improvement in the closeness coefficient, and a 16 % improvement in the Grey relational grade, which considers combined SR, MRR, and EWR performance. Scanning Electron Microscope (SEM) analysis of surfaces machined with optimal parameters showed minimal debris, cracks, and no recast layer, indicating high surface integrity. This research enhances EDM optimization for AMMC, achieving efficiency in machining, minimizing tool wear, and meeting surface quality requirements.

4.
J Environ Manage ; 367: 122065, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111012

RESUMEN

In this study, low-cost tubular ceramic membranes were fabricated by using waste slag and natural raw materials in order to decrease the manufacturing carbon footprints. The effects of incorporation of phosphorus slag (PS) and blast furnace slag (BFS) in the mullite-zeolite membrane body were investigated. The structural characteristics of the fabricated membranes were evaluated using X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), atomic force microscopy (AFM), contact angle, porosity and average pore size analyses. Thermal and mechanical stability were studied by thermogravimetric analysis (TGA) and three-point bending test, respectively. The oily wastewater treatment tests revealed that an increase in the slag percentage from 0 to 30% leads to enhancing the permeate flux from 99 l m-2 h-1 to 349 l m-2 h-1 for PS-based tubular membrane and to 244 l m-2 h-1 for BFS-based tubular membrane under 1 bar applied. The chemical oxygen demand (COD) removal percentage of all membranes was reported almost 99% for oily wastewater feed with a COD concentration of 612 mg l-1. In addition, the investigation of membrane fouling mechanisms was carried out using Hermia models indicating that the best correlation with the experimental data is observed for the complete pore blocking model. This study presents experimental foundations aimed at enhancing the performance of affordable slag-based membranes, thus fostering their applicability in engineering contexts.


Asunto(s)
Cerámica , Membranas Artificiales , Aguas Residuales , Cerámica/química , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Difracción de Rayos X , Análisis de la Demanda Biológica de Oxígeno , Porosidad
5.
Adv Colloid Interface Sci ; 332: 103250, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047647

RESUMEN

The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.

6.
Adv Healthc Mater ; : e2401525, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978444

RESUMEN

Lung cancer remains a major global health concern with high mortality rates and poor prognosis. Bridging the gap between the chemical and cellular understanding of cell-decorated biomimetic nanocomposites and their clinical translation is crucial for developing effective therapies. Nanocomposites show promise in targeted drug delivery and diagnostics, but their clinical application is hindered by biocompatibility and clearance issues. To overcome these challenges, biomimetic approaches utilizing cell membrane-coated nanomaterials emerge. By camouflaging nanomaterials with cell membranes, the biointerfaces are enhanced, and the inherent properties of the donor cell membranes are acquired. This review provides an overview of recent advancements on cell membrane-coated nanocomposites for lung cancer diagnosis and treatment. It discusses fabrication techniques, biomedical applications, challenges, and future prospects. The incorporation of cell membranes into nanocomposites holds potential for improved lung cancer therapy, but further development and refinement are needed for precise tumor targeting. Addressing the identified challenges will pave the way for clinical translation of these biomimetic nanoplatforms and advance lung cancer diagnosis and treatment.

7.
Nanotechnology ; 35(39)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38955171

RESUMEN

The current work emphasizes the preparation of trimetallic core-shell Ag-TeO2@ZnO nanocomposites (NCs) by thermo-mechanical method for the efficient photocatalytic degradation of 2,4-Dichlorophenol and ß-naphthol pollutants. FE-SEM shows that Ag and TeO2nanoparticles are deposited on the surface of ZnO nanotubes. The band gap of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are found to be 3.16 and 2.96 eV, respectively. The calculated specific surface area (SBET) of pristine ZnO NPs and 5 wt% Ag-TeO2@ZnO nanocomposites are 40.47 and 45.66 m2g-1respectively, confirming that Ag and TeO2nanoparticles contribute to increasing in surface area of pure ZnO. The synthesised nanocomposite showed excellent photocatalytic performance for the degradation of ß -naphthol (95.6%) in 40 min at the concentration of (0.6 mg ml-1) and 2,4-DCP (99.6%) in 180 min (0.4 mg ml-1) under natural sunlight. Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were carried out to study the electrochemical properties. The determination of reactive oxygen species (ROS) confirmed that the degradation of the pollutants by 5 wt% Ag-TeO2@ZnO NCs was due to the formation of superoxide radicals. Electron paramagnetic resonance revealed the presence of sharp signals in pure ZnO nanoparticles at g ∼1.95 and oxygen vacancy peak at g ∼2.01 in 5 wt% Ag-TeO2@ZnO NCs. To study the mechanism behind the degradation of pollutants, Scavenger test using histidine and ascorbic acid (ROS scavengers) was performed. The synthesised nanocomposites are highly stable and showed enhanced efficiency up to three cycles, confirming their reusability as a photocatalyst.

8.
Ecotoxicol Environ Saf ; 280: 116550, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38843746

RESUMEN

Desorption and adsorbent regeneration are imperative factors that are required to be taken into account when designing the adsorption system. From the environmental, economic, and practical points of view, regeneration is necessary for evaluating the efficiency and sustainability of synthesized adsorbents. However, no study has investigated the optimization of arsenic species desorption from spent adsorbents and their regeneration ability for reuse as well as safe disposal. This study aims to investigate the desorption ability of arsenic ions adsorbed on hybrid granular activated carbon and the optimization of the independent factors influencing the efficient recovery of arsenic species from the spent activated carbon using central composite design of the response surface methodology. The activated carbon before the sorption process and after the adsorption-desorption of arsenic ions have been characterized using SEM-EDX, FTIR, and TEM. The study found that all the investigated independent desorption variables greatly influence the retrievability of arsenic ions from the spent activated carbon. Using the desirability function for the optimization of the independent factors as a function of desorption efficiency, the optimum experimental conditions were solution pH of 2.00, eluent concentration of 0.10 M, and temperature of 26.63 ℃, which gave maximum arsenic ions recovery efficiency of 91 %. The validation of the quadratic model using laboratory confirmatory experiments gave an optimum arsenic ions desorption efficiency of 97 %. Therefore, the study reveals that the application of the central composite design of the response surface methodology led to the development of an accurate and valid quadratic model, which was utilized in the enhanced optimization of arsenic ions recovery from the spent reclaimable activated carbon. More so, the desorption isotherm and kinetic data of arsenic were well correlated with the Langmuir and the pseudo-second-order models, while the thermodynamics studies indicated that arsenic ions desorption process was feasible, endothermic, and spontaneous.


Asunto(s)
Arsénico , Carbón Orgánico , Contaminantes Químicos del Agua , Arsénico/química , Arsénico/análisis , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Temperatura
9.
J Food Sci Technol ; 61(7): 1374-1382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910918

RESUMEN

Date palm (Phoenix dactylifera L.) is the most commonly cultivated fruit tree in the Middle East and North Africa. Date fruits are an excellent source of nutrition due to their high sugar content and high levels of phenols, minerals, and antioxidants. This work aimed to prepare a soluble natural sweetener from date fruit extract using colloidal gas aprons (CGAs) generated with a food-grade non-ionic surfactant (Tween 20). Various process parameters, such as the flow rate of the CGAs, the volume of the feed, the temperature of the CGAs, and the feed solution, were varied to obtain the optimal parameters. In the foam phase, the maximum soluble sugar enrichment of 92% was obtained at a flow rate of 50 mL/min of CGA and a solution temperature of 23 °C. The formation of intermolecular hydrogen bonding between the glucose molecules and the surfactant Tween 20 was confirmed by molecular modeling studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05907-9.

10.
Int J Phytoremediation ; 26(10): 1701-1715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38755758

RESUMEN

Pakistan is an agricultural country producing plenty of fruits, like: mango, banana, apple, peaches, grapes, plums, variety of citrus fruits including lemon, grapefruit, and oranges. So far the peels of most of the fruits are usually wasted and not properly utilized anywhere. In this work, the peels of banana and grapefruit are converted into biochar by slow pyrolysis under controlled supply of air and used for sequestering cyanide ions from aqueous medium after chemical modification with ZnCl2 and sodium dodecyl sulfate (SDS). The modified biochar was characterized by various instrumental techniques, like: SEM, FTIR, TGA, and CHNS. Different parameters, like: time, temperature, pH, and dose of adsorbent affecting the adsorption of cyanide ions, onto prepared biochar were optimized and to understand the adsorption phenomenon, kinetic and thermodynamic studies were performed. Concentration of cyanide ions was estimated by employing standard ion selective electrode system and it is found that Sodium Dodecyl Sulfate treated biochar of banana peels shown more adsorption capacity, i.e.,: 17.080 mg/g as compared to all samples. Present work revealed that the biochar produced from the fruit waste has sufficient potential to eliminate trace quantities of cyanide from water, especially after treatment with sodium dodecyl sulfate.


An industrial area in Asian and African countries where mining is done using traditional techniques is the major cause of cyanide toxicity in wastewater streams. So, here chemically fabricated biochar made by peels of banana and grape fruit is employed for removal of cyanide ion for controlling aquatic pollution using local resources in green way. Favorable results indicated the feasibility of this process, which is cost effective, convenient, ecofriendly, and sustainable.


Asunto(s)
Carbón Orgánico , Cianuros , Frutas , Musa , Musa/química , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/metabolismo , Vitis , Biodegradación Ambiental , Dodecil Sulfato de Sodio , Citrus paradisi , Pakistán , Cinética
11.
Adv Colloid Interface Sci ; 329: 103196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38781828

RESUMEN

A growing number of variables, including rising population, water scarcity, growth in the economy, and the existence of harmful heavy metals in the water supply, are contributing to the increased demand for wastewater treatment on a global scale. One of the innovative water treatment technologies is the adsorptive removal of heavy metals through the application of natural and engineered adsorbents. However, adsorption currently has setbacks that prevent its wider application for heavy metals sequestration from aquatic environments using various adsorbents, including difficulty in selecting suitable desorption eluent to recover adsorbed heavy metals and regeneration techniques to recycle the spent adsorbents for further use and safe disposal. Therefore, the recovery of adsorbed heavy metal ions and the ability to reuse the spent adsorbents is one of the economic and environmental sustainability approaches. This study presents a state-of-the-art critical review of different desorption agents that could be used to retrieve heavy metals and regenerate the spent adsorbents for further adsorption-desorption processes. Additionally, an attempt was made to discuss and summarize some of the independent factors influencing heavy metals desorption, recovery, and adsorbent regeneration. Furthermore, isotherm and kinetic modeling have been summarized to provide insights into the adsorption-desorption mechanisms of heavy metals. Finally, the review provided future perspectives to provide room for researchers and industry players who are interested in heavy metals desorption, recovery, and spent adsorbents recycling to reduce the high cost of adsorbents reproduction, minimize secondary waste generation, and thereby provide substantial economic and environmental benefits.

12.
Environ Res ; 255: 119192, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777299

RESUMEN

The present study evaluates the adsorption efficiency of low-cost carbonaceous adsorbents as fly ash (FA), saw dust biochar (SDB) (untreated and alkali - treated), live/dead pulverized white rot fungus Hypocrea lixii biomass encapsulated in sodium alginate (SA) against the commercially available activated carbon (AC) and graphene oxide (GO) SA beads for removal of benzene phenol derivatives - Bisphenol A (BPA)/triclosan (TCS). Amongst bi - and tri - composites SA beads, tri-composite beads comprising of untreated flyash - dead fungal biomass - sodium alginate (UFA - DB - SA) showed at par results with commercial composite beads. The tri - composite beads with point zero charge (Ppzc) of 6.2 was characterized using FTIR, XRD, surface area BET and SEM-EDX. The batch adsorption using tri - composite beads revealed removal of 93% BPA with adsorption capacity of 16.6 mg/g (pH 6) and 83.72% TCS with adsorption capacity of 14.23 mg/g (pH 5), respectively at 50 ppm initial concentration with 6 % adsorbent dose in 5 h. Freundlich isotherm favoring multilayered adsorption provided a better fit with r2 of 0.9674 for BPA and 0.9605 for TCS respectively. Intraparticle diffusion model showed adsorption of BPA/TCS molecules to follow pseudo - second order kinetics with boundary layer diffusion governed by first step of fast adsorption and intraparticle diffusion within pores by second slow adsorption step. Thermodynamic parameters (ΔH°, ΔS°, ΔG°) revealed adsorption process as exothermic, orderly and spontaneous. Methanol showed better desorbing efficiency leading to five cycles reusability. The phytotoxicity assay revealed increased germination rate of mung bean (Vigna radiata) seeds, sprinkled with post adsorbed treated water (0 h, 5 h and 7 h) initially spiked with 50 ppm BPA/TCS. Overall, UFA - DB - SA tri - composite beads provides a cost effective and eco - friendly matrix for effective removal of hydrophobic recalcitrant compounds.


Asunto(s)
Alginatos , Compuestos de Bencidrilo , Fenoles , Adsorción , Fenoles/química , Alginatos/química , Compuestos de Bencidrilo/química , Grafito/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Hypocrea/química , Ceniza del Carbón/química
13.
Heliyon ; 10(7): e25732, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601584

RESUMEN

Transformations of applied phosphorus (P) fertilizer to inaccessible residual soil P is the main cause of inadequate P availability to plants in the majority of the cultivated soils. This study investigated the effect of organic wastes (rice-residue biochar, farmyard manure (FYM), poultry manure (PM), green manure (GM), and wheat straw (WS) on residual-P mobilization and its bioavailability in maize crops under different P status soils. Surface soil samples of 'medium-P' (12.5-22.5 kg P ha-1) and 'high-P' (22.5-50.0 kg P ha-1) status soils were collected from a long-term differential P fertilization experiment on maize-wheat rotation and were subjected to examine P adsorption/desorption, phosphatase activity and microbial biomass P (MBP) after incubation with organic amendments of varying elemental composition. The incorporation of organic manures decreases P sorption with maximum decrease in FYM-treated soils, indicating increased P concentration in soil solution. In contrast, WS due to its wider C/P ratio increased P sorption and did not produce any significant impact on the bioavailability of P. High-P status soils witnessed lower P sorption than medium-P soils. The MBP increased in the order of PM > FYM > GM > WS > biochar irrespective of soil P status. The availability and mobility of residual-P with FYM and PM was significantly higher than that of residual-P from biochar, GM and WS. Organics with wider C/P ratio immobilize bioavailable P in the short term regardless of soil P status.

14.
Sci Rep ; 14(1): 9915, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689005

RESUMEN

In recent years, carbon quantum dots (CQDs) have garnered considerable attention as a promising material for biomedical applications because of their unique optical and biological properties. In this study, CQDs were derived from the leaves of Hibiscus rosa-sinensis Linn. via microwave-assisted technique and characterized using different techniques such as ultraviolet-visible, Fourier transform infrared, fluorescence spectrometry, X-ray diffraction, dynamic light scattering, transmission electron microscopy and energy-dispersive X-ray spectroscopy. Subsequently, their potential for biomedical applications was investigated through in vitro assays assessing scratch healing, anti-inflammatory, antibacterial, and cytotoxicity properties. It was found that the CQDs were fluorescent, polycrystalline, quasi-spherical, ~ 12 nm in size with presence of -OH and -COOH groups on their negatively charged surfaces, and demonstrated good anti-inflammatory by inhibiting protein denaturation, cyclooxygenase-2 and regulating inflammatory cytokines. The CQDs also exhibited antimicrobial activity against Klebsiella pneumoniae and Bacillus cereus, good biocompatibility, along with excellent promotion of cell proliferation in vitro, indicating their potential as a anti-inflammatory and wound healing material. The properties were more enhanced than their precursor, H. rosa-sinensis leaf extract. Hence, the CQDs synthesized from the leaves of H. rosa-sinensis can serve as a potential biomedical agent.


Asunto(s)
Carbono , Hibiscus , Microondas , Extractos Vegetales , Puntos Cuánticos , Puntos Cuánticos/química , Hibiscus/química , Carbono/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Ratones , Klebsiella pneumoniae/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier
15.
J Hazard Mater ; 471: 134372, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669933

RESUMEN

Bioaerosol is one of the main ways to spread respiratory infectious diseases. In order to further improve the sterilization efficiency of copper-manganese-cerium oxide (CuMnCeOx), the post-treatment method based on acid etching was adopted. The results showed that sterilization efficiency of the treated CuMnCeOx could reach 99% in aerosol with space velocity of 1400 h-1. L(+)-ascorbic acid successfully promoted the formation of Cu+, oxygen vacancies and the generation of reactive oxygen species (ROS) on the surface of the treated CuMnCeOx. During sterilization in liquid system, the transcriptome identified 316 differentially expressed genes, including 270 up-regulated genes and 46 down-regulated genes. Differentially expressed genes were significantly enriched in cell wall (GO:0005618) and external encapsulating structure (GO:0030312). Up-regulated genes were shown in regulation of reactive oxygen species biosynthetic processes (GO:1903409, GO:1903426, GO:1903428) and positive regulation all of reactive oxygen species metabolic process (GO:2000379), indicating that ROS induced cell death by destroying cell wall.


Asunto(s)
Aerosoles , Cobre , Manganeso , Especies Reactivas de Oxígeno , Esterilización , Cobre/química , Especies Reactivas de Oxígeno/metabolismo , Esterilización/métodos , Manganeso/química , Óxidos/química , Transcriptoma/efectos de los fármacos
16.
Chemosphere ; 357: 142051, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38648988

RESUMEN

Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.


Asunto(s)
Metales , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Metales/química , Cinética , Termodinámica , Iones/química
17.
ACS Omega ; 9(8): 9615-9624, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38434881

RESUMEN

Gnidia glauca (Fresen.) Gilg has demonstrated significant anticancer potential through multiple mechanisms, including apoptosis induction, as shown by the TUNEL assay against MCF-7 cells, modulation of tubulin polymerization, preservation of mitochondrial function indicated by the JC-1 assay, and inhibition of DNA polymerase α and ß activities. Rationale for the present study is to investigate the potential anticancer properties of G. glauca leaf alkaloid extract. Fresh and healthy G. glauca leaves were cleaned, shade-dried, and the powder was defatted, extracted with 10% acetic acid in ethanol, and subjected for alkaloid extraction. The partially purified G. glauca leaf alkaloid extract was evaluated for its effects on tubulin polymerization, DNA polymerase activity, mitochondrial membrane potential, and apoptosis studies using human breast cancer (MCF-7) cells by flow cytometry. The extract was found to affect microtubule assembly in a concentration-dependent manner (15.125-250 µg/mL), indicating presence of alkaloids that function as spindle poison agents. Leaf alkaloid extract of G. glauca was also found to affect the mitochondrial membrane potential with IC50 value 144.51 µg/mL, and inhibited DNA polymerase α and ß activities dose dependently, thus potentially interfering with DNA replication and repair processes. Leaf alkaloid extract also showed the potential to induce DNA damage of 53.6%, albeit somewhat less than the standard drug camptothecin (64.94%) as confirmed by the TUNEL assay. Additionally, the GgLAE (IC50 144.51 µg/mL) showed significant inhibition of MCF-7 cells proliferation after 24 h, revealing phase arrests in sub G0/G1, S, and G2/M. These findings suggest that G. glauca leaf alkaloid extract contains alkaloids that possess anticancer properties with multiple targets, making the plant a natural source for a promising phytochemical drug candidates for further evaluation in pre-clinical and clinical studies. Further investigations are warranted to determine the efficacy, safety, identification and characterization of the alkaloids, and evaluate and determine their potential applications in cancer therapy.

18.
J Environ Manage ; 356: 120670, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531142

RESUMEN

One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.


Asunto(s)
Contaminantes Ambientales , Metales Pesados , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Contaminantes Ambientales/química , Nanoestructuras/química , Purificación del Agua/métodos , Metales Pesados/química , Adsorción , Iones , Contaminantes Químicos del Agua/química
19.
Sci Rep ; 14(1): 6755, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514667

RESUMEN

In this study, green synthesis, characterizations, photocatalytic performance, and antibacterial applications of α-Mn2O3 nanoparticles are reported. The synthesized nanoparticles were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscope (TEM), Scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), Brunauer Emmett Teller (BET), Electrochemical Impedance Spectroscopy (EIS), Photoluminescence (PL), and Differential reflectance spectroscopy (DRS) analysis. The investigation verified that the α-Mn2O3 nanoparticles possessed a cubic structure, with a crystallite size of 23 nm. The SEM and TEM techniques were used to study the nanoscale morphology of α- Mn2O3 nanoparticles, which were found to be spherical with a size of 30 nm. Moreover, the surface area was obtained as 149.9 m2 g-1 utilizing BET analysis, and the band gap was determined to be 1.98 eV by DRS analysis. The photocatalysis performance of the α-Mn2O3 NPs was evaluated for degrading Eriochrome Black T (EBT) dye under visible light and degradation efficiency was 96% in 90 min. The photodegradation mechanism of EBT dye was clarified with the use of radical scavenger agents, and the degradation pathway was confirmed through Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. Additionally, the produced nanoparticles could be extracted from the solution and continued to exhibit photocatalysis even after five repeated runs under the same optimal conditions. Also, the antibacterial activity of green synthesized α-Mn2O3 nanoparticles was investigated by using the broth microdilution method towards Enterococcus faecalis ATCC 29212 (Gram-positive), Staphylococcus aureus ATCC 29213 (Gram-positive), Salmonella typhimurium ATCC 14028 (Gram-negative), Klebsiella pneumoniae ATCC 7881 (Gram-negative), Escherichia coli ATCC 25922 (Gram-negative), Proteus mirabilis ATCC 7002 (Gram-negative), and Pseudomonas aeruginosa ATCC 27853 (Gram-negative) bacterial strains.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/farmacología , Antibacterianos/química , Luz , Microscopía Electrónica de Rastreo , Nanopartículas del Metal/química , Difracción de Rayos X
20.
Environ Res ; 252(Pt 1): 118786, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38537743

RESUMEN

Industrial wastewater contains a wide range of pollutants that, if released directly into natural ecosystems, have the potential to pose serious risks to the environment.This study aims to investigate sustainable and efficient approaches for treating tannery wastewater, employing a combination of hyphenated Fenton oxidation and adsorption processes. Rigorous analyses were conducted on wastewater samples, evaluating parameters like COD, sulphide, NH3-N, PO43-, NO3-, and Cr(VI). The performance of this adsorbent material was gauged through column adsorption experiments. A comprehensive characterization of the adsorbent was undertaken using techniques such as SEM, EDX, BET, FTIR, XRD, and LIBS. The study delved into varying operational parameters like bed depth (ranging from 3.5 to 9.5 cm) diameter (2.5 cm) and influent flow rate (ranging from 5 to 15mLmin-1). The experimental outcomes revealed that increasing the bed depth and decreasing the influent flow rate significantly bolstered the adsorption column's effectiveness. Breakthrough curves obtained were fitted with different models, including the Thomas and Yoon-Nelson models. The most optimal column performance was achieved with a bed height of 10.5 cm and a flow rate of 5mLmin-1. The combined process achieved removal efficiencies of 94.5% for COD, 97.4% for sulphide, 96.2% for NH3-N, 83.1% for NO3-, 79.3% for PO43-, and 96.9% for Cr(VI) in tannery effluent. This research presents a notable stride toward the development of sustainable and efficient strategies for tannery wastewater treatment.


Asunto(s)
Carbón Orgánico , Residuos Industriales , Curtiembre , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Residuos Industriales/análisis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Aguas Residuales/análisis , Madera/química , Hierro/química , Peróxido de Hidrógeno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA