Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 329: 117001, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565496

RESUMEN

Ethanol production has increased over the years, and Brazil ranking second in the world using sugarcane as the main raw material. However, 10-15 L of vinasse are generated per liter of ethanol produced. Besides large volumes, this wastewater has high polluting potential due to its low pH and high concentrations of organic matter and nutrients. Given the high biodegradability of the organic matter, the treatment of this effluent by anaerobic digestion and membrane separation processes results in the generation of high value-added byproducts such as volatile fatty acids (VFAs), biohydrogen and biogas. Membrane bioreactors have been widely evaluated due to the high efficiency achieved in vinasse treatment. In recent years, high retention membrane bioreactors, in which high retention membranes (nanofiltration, reverse osmosis, forward osmosis and membrane distillation) are combined with biological processes, have gained increasing attention. This paper presents a critical review focused on high retention membrane bioreactors and the challenges associated with the proposed configurations. For nanofiltration membrane bioreactor (NF-MBR), the main drawback is the higher fouling propensity due to the hydraulic driving force. Nonetheless, the development of membranes with high permeability and anti-fouling properties is uprising. Regarding osmotic membrane bioreactor (OMBR), special attention is needed for the selection of a proper draw solution, which desirably should be low cost, have high osmolality, reduce reverse salt flux, and can be easily reconcentrated. Membrane distillation bioreactor (MDBR) also exhibit some shortcomings, with emphasis on energy demand, that can be solved with the use of low-grade and residual heat, or renewable energies. Among the configurations, MDBR seems to be more advantageous for sugarcane vinasse treatment due to the lower energy consumption provided by the use of waste heat from the effluent, and due to the VFAs recovery, which has high added value.


Asunto(s)
Saccharum , Purificación del Agua , Aguas Residuales , Membranas Artificiales , Reactores Biológicos , Ósmosis , Biocombustibles , Etanol , Purificación del Agua/métodos
2.
J Environ Manage ; 295: 113137, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34198179

RESUMEN

The increase in biofuel production by 2030, driven by the targets set at the 21st United Nations Framework Convention on Climate Change (COP21), will promote an increase in ethanol production, and consequently more vinasse generation. Sugarcane vinasse, despite having a high polluting potential due to its high concentration of organic matter and nutrients, has the potential to produce value-added resources such as volatile fatty acids (VFA), biohydrogen (bioH2) and biomethane (bioCH4) from anaerobic digestion. The objective of this paper is to present a critical review on the vinasse treatment by anaerobic digestion focusing on the final products. Effects of operational parameters on production and recovery of these resources, such as pH, temperature, retention time and type of inoculum were addressed. Given the importance of treating sugarcane vinasse due to its complex composition and high volume generated in the ethanol production process, this is the first review that evaluates the production of VFAs, bioH2 and bioCH4 in the treatment of this organic residue. Also, the challenges of the simultaneous production of VFA, bioH2 and bioCH4 and resources recovery in the wastewater streams generated in flex-fuel plants, using sugarcane and corn as raw material in ethanol production, are presented. The installation of flex-fuel plants was briefly discussed, with the main impacts on the treatment process of these effluents either jointly or simultaneously, depending on the harvest season.


Asunto(s)
Saccharum , Anaerobiosis , Biocombustibles , Reactores Biológicos , Etanol , Ácidos Grasos Volátiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA