Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35009209

RESUMEN

The potential use of amino acids by ruminal microorganisms converting them into microbial protein for ruminants makes it challenging to supplement these nutrients in an accessible form in animals' diets. Several strategies to protect amino acids from ruminal degradation were reported, producing amino acids available for the protein used in the intestine called "bypass." The intercalation of biomolecules in clay mineral minerals has gained notoriety due to its ability to support, protect, transport, physicochemical properties and non-toxicity. This study aimed to investigate the incorporation of L-lysine (Lys), L-methionine (Met), and L-tryptophan (Trp) amino acids in the clay minerals sepiolite (Sep) and Veegum® (Veg) using the adsorption method. The characterization techniques of X-ray diffraction and infrared spectroscopy indicated the presence of biomolecules in the inorganic matrices. Elemental and thermal analyzes monitored the percentages of incorporated amino acids. They showed better incorporation capacities for Veg, such as Met-Veg < Lys-Veg < Trp-Veg and Lys-Sep < Met-Sep < Trp-Sep for sepiolite, except for the incorporation of Met. Matrices provide a promising alternative for planning the administration of biomolecules, using essential amino acids as models, and may offer an alternative to improve functional diet strategies.

2.
Materials (Basel) ; 12(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31694168

RESUMEN

Inorganic matrices and biopolymers have been widely used in pharmaceutical fields. They show properties such as biocompatibility, incorporation capacity, and controlled drug release, which can become more attractive if they are combined to form hybrid materials. This work proposes the synthesis of new drug delivery systems (DDS) based on magnesium phyllosilicate (Talc) obtained by the sol-gel route method, the biopolymer chitosan (Ch), and the inorganic-organic hybrid formed between this matrix (Talc + Ch), obtained using glutaraldehyde as a crosslink agent, and to study their incorporation/release capacity of amiloride as a model drug. The systems were characterized by X-ray diffraction (XRD), Therma analysis TG/DTG, and Fourier-transform infrared spectroscopy (FTIR) that supported the DDS's formation. The hybrid showed a better drug incorporation capacity compared to the precursors, with a loading of 55.74, 49.53, and 4.71 mg g-1 for Talc + Ch, Talc, and Ch, respectively. The release assays were performed on a Hanson Research SR-8 Plus dissolver using apparatus I (basket), set to guarantee the sink conditions. The in vitro release tests showed a prolongation of the release rates of this drug for at least 4 h. This result proposes that the systems implies the slow and gradual release of the active substance, favoring the maintenance of the plasma concentration within a therapeutic window.

3.
Molecules ; 24(19)2019 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-31569494

RESUMEN

Considering the challenges of urea administration due to the high ureolytic activity of the rumen and the importance of its use, as well as taking into account the relevance of sustainably exploiting the technological potential of biodiversity, this research studies the encapsulation of urea in different clay minerals (palygorskite (Pal), sepiolite (Sep), and Veegum® (V)) as an alternative for use as nonprotein nitrogen (NNP) sources. A method of incorporation was developed in which the encapsulation of urea was proven by X-ray diffraction; fibrous materials, Pal and Sep had similar characteristics due to the decrease in the relative plane intensity (011), suggesting a decrease in the order of their stacking due to the presence of urea on the surface or inside channels. By contrast, V showed a 7.74° reflection shift, suggesting an increase in basal spacing from 11.45 Å in V to 14.88 Å in the sample after urea encapsulation. By thermogravimetry, it was observed that the presence of urea did not change the mass-loss profiles but only increased the percentage of loss in respective events, indicating urea incorporation in the clay minerals. These results provide a promising alternative for administering NNP sources in the ruminant diet.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Arcilla/química , Minerales/química , Nutrientes/química , Rumiantes , Urea/química , Animales , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría , Difracción de Rayos X
4.
Carbohydr Polym ; 92(2): 1203-10, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23399147

RESUMEN

Cellulose (Cel) was first chemically modified with thionyl chloride to increase its reactivity. In the next step CelCl was reacted with ethylenediamine (CelEn) and subsequently reacted with ethylene sulfide to obtain a solid substance, CelEnEs. The modification reactions were confirmed by elemental analysis, TG, XRD, (13)C NMR and FTIR. The chemically modified biopolymer CelEnEs had an order of divalent metal sorption of Pb(2+)>Cd(2+)>Ni(2+)>Co(2+)>Cu(2+)>Zn(2+), and the maximum adsorption capacities were found to be 6.282±0.023, 5.783±0.015, 5.561±0.017, 4.694±0.013, 1.944±0.062 and 1.733±0.020 mmol g(-1), respectively. The equilibrium data were fitted to Langmuir, Freundlich and Temkin models, and in general, the experimental data best fit the Freundlich model. This newly synthesized biopolymer proved to be a chemically useful material for cations removal from aqueous solution.


Asunto(s)
Cationes Bivalentes/química , Cationes Bivalentes/aislamiento & purificación , Celulosa/química , Sulfuros/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Aminación , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA