Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 162: 213931, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38924805

RESUMEN

Microbial colonization and development of infections in wounds is a sign of chronicity. The prevailing approach to manage and treat these wounds involves dressings. However, these often fail in effectively addressing infections, as they struggle to both absorb exudates and maintain optimal local moisture. The system here presented was conceptualized with a three-layer design: the outer layer made of a fibrous polycaprolactone (PCL) film, to act as a barrier for preventing microorganisms and impurities from reaching the wound; the intermediate layer formed of a sodium alginate (SA) hydrogel loaded with ampicillin (Amp) for fighting infections; and the inner layer comprised of a fibrous film of PCL and polyethylene glycol (PEG) for facilitating cell recognition and preventing wound adhesion. Thermal evaluations, degradation, wettability and release behavior testing confirmed the system resistance overtime. The sandwich demonstrated the capability for absorbing exudates (≈70 %) and exhibited a controlled release of Amp for up to 24 h. Antimicrobial testing was performed against Staphylococcus aureus and Escherichia coli, as representatives of Gram-positive and Gram-negative bacteria: >99 % elimination of bacteria. Cell cytotoxicity assessments showed high cytocompatibility levels, confirming the safety of the proposed sandwich system. Adhesion assays confirmed the system ease of detaching without mechanical effort (0.37 N). Data established the efficiency of the sandwich-like system, suggesting promising applications in infected wound care.


Asunto(s)
Alginatos , Antibacterianos , Escherichia coli , Poliésteres , Staphylococcus aureus , Infección de Heridas , Alginatos/química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Antibacterianos/administración & dosificación , Poliésteres/química , Ampicilina/farmacología , Ampicilina/uso terapéutico , Ampicilina/química , Humanos , Hidrogeles/química , Polietilenglicoles/química , Animales , Vendajes , Pruebas de Sensibilidad Microbiana , Ratones , Cicatrización de Heridas/efectos de los fármacos
2.
Biomater Adv ; 151: 213488, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285725

RESUMEN

In chronic wound (CW) scenarios, Staphylococcus aureus-induced infections are very prevalent. This leads to abnormal inflammatory processes, in which proteolytic enzymes, such as human neutrophil elastase (HNE), become highly expressed. Alanine-Alanine-Proline-Valine (AAPV) is an antimicrobial tetrapeptide capable of suppressing the HNE activity, restoring its expression to standard rates. Here, we proposed the incorporation of the peptide AAPV within an innovative co-axial drug delivery system, in which the peptide liberation was controlled by N-carboxymethyl chitosan (NCMC) solubilization, a pH-sensitive antimicrobial polymer effective against Staphylococcus aureus. The microfibers' core was composed of polycaprolactone (PCL), a mechanically resilient polymer, and AAPV, while the shell was made of the highly hydrated and absorbent sodium alginate (SA) and NCMC, responsive to neutral-basic pH (characteristic of CW). NCMC was loaded at twice its minimum bactericidal concentration (6.144 mg/mL) against S. aureus, while AAPV was loaded at its maximum inhibitory concentration against HNE (50 µg/mL), and the production of fibers with a core-shell structure, in which all components could be detected (directly or indirectly), was confirmed. Core-shell fibers were characterized as flexible and mechanically resilient, and structurally stable after 28-days of immersion in physiological-like environments. Time-kill kinetics evaluations revealed the effective action of NCMC against S. aureus, while elastase inhibitory activity examinations proved the ability of AAPV to reduce HNE levels. Cell biology testing confirmed the safety of the engineered fiber system for human tissue contact, with fibroblast-like cells and human keratinocytes maintaining their morphology while in contact with the produced fibers. Data confirmed the engineered drug delivery platform as potentially effective for applications in CW care.


Asunto(s)
Quitosano , Infecciones Estafilocócicas , Humanos , Alginatos/farmacología , Quitosano/farmacología , Quitosano/química , Elastasa de Leucocito/metabolismo , Elastasa de Leucocito/farmacología , Péptidos/farmacología , Polímeros/farmacología , Staphylococcus aureus/metabolismo , Valina/farmacología , Heridas y Lesiones/complicaciones , Heridas y Lesiones/microbiología , Heridas y Lesiones/terapia , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
3.
Environ Technol ; 34(13-16): 1947-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24350448

RESUMEN

A very compact flat microbial fuel cell (MFC), with 64 cm2 each for the anode surface and the cathode surface and 1 cm3 each for the anode and cathode chambers, was tested for wastewater treatment with simultaneous electricity production with the ultimate goal of implementing an autonomous service in decentralized wastewater treatment systems. The MFC was operated with municipal wastewater in sequencing batch reactor mode with re-circulation. Current densities up to 407 W/m3 and a carbon removal of 83% were obtained. Interruption in the operation slightly decreased power density, while the re-circulation ratio did not influence power generation. The anode biofilm presented high conductivity, activity and diversity. The denaturing gradient gel electrophoresis band-pattern of the DNA showed the presence of several ribotypes with different species of Shewanellaceae and Geobacteraceae families.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Eliminación de Residuos Líquidos/instrumentación , Eliminación de Residuos Líquidos/métodos , Biopelículas , Carbono/química , Electroforesis en Gel de Gradiente Desnaturalizante , Conductividad Eléctrica , Hierro/química , Viabilidad Microbiana , Microscopía Confocal , Aguas Residuales/química , Aguas Residuales/microbiología
4.
Free Radic Res ; 36(11): 1219-27, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12592674

RESUMEN

The antioxidant and prooxidant activities of flavonoids belonging to several classes were studied to establish their structure-activity relationships against different oxidants. Special attention was paid to the flavonoids quercetin (flavone), taxifolin (flavanone) and catechin (flavanol), which possess different basic structures but the same hydroxylation pattern (3,5,7,3'4'-OH). It was found that these three flavonoids exhibited comparable antioxidant activities against different oxidants leading to the conclusion that the presence of ortho-catechol group (3',4'-OH) in the B-ring is determinant for a high antioxidant capacity. The flavone kaempferol (3,5,7,4'-OH), however, in spite of bearing no catechol group, also presents a high antioxidant activity against some oxidants. This fact can be attributed to the presence of both 2,3-double bond and the 3-hydroxyl group, meaning that the basic structure of flavonoids becomes important when the antioxidant activity of B-ring is small.


Asunto(s)
Antioxidantes/farmacología , Catequina/farmacología , Quempferoles , Quercetina/análogos & derivados , Quercetina/farmacología , Amidinas/metabolismo , Ácido Ascórbico/farmacología , Compuestos de Bifenilo , Ácido Edético/farmacología , Flavonoides/farmacología , Flavonoles , Radicales Libres/metabolismo , Hierro/farmacología , Liposomas/metabolismo , Metamioglobina/metabolismo , Picratos/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA