Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Appl Physiol Nutr Metab ; 49(2): 157-166, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37816257

Maternal protein malnutrition during developmental periods might impair the redox state and the brain's excitatory/inhibitory neural network, increasing central sympathetic tone. Conversely, moderate physical exercise at an early age reduces the risk of chronic diseases. Thus, we hypothesized that a moderate training protocol could reduce the harmful effects of a low-protein maternal diet on the brainstem of young male offspring. We used a rat model of maternal protein restriction during the gestational and lactation period followed by an offspring's continuous treadmill exercise. Pregnant rats were divided into two groups according to the protein content in the diet: normoprotein (NP), receiving 17% of casein, and low protein (LP), receiving 8% of casein until the end of lactation. At 30 days of age, the male offspring were further subdivided into sedentary (NP-Sed and LP-Sed) or exercised (NP-Ex and LP-Ex) groups. Treadmill exercise was performed as follows: 4 weeks, 5 days/week, 60 min/day at 50% of maximal running capacity. The trained animals performed a treadmill exercise at 50% of the maximal running capacity, 60 min/day, 5 days/week, for 4 weeks. Our results indicate that a low-protein diet promotes deficits in the antioxidant system and a likely mitochondrial uncoupling. On the other hand, physical exercise restores the redox balance, which leads to decreased oxidative stress caused by the diet. In addition, it also promotes benefits to GABAergic inhibitory signaling. We conclude that regular moderate physical exercise performed in youthhood protects the brainstem against changes induced by maternal protein restriction.


Brain Stem , Caseins , Pregnancy , Female , Rats , Animals , Male , Humans , Rats, Wistar , Brain Stem/metabolism , Antioxidants/metabolism , Oxidation-Reduction , Diet, Protein-Restricted/adverse effects , Maternal Nutritional Physiological Phenomena
2.
Physiol Behav ; 276: 114453, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38159589

BACKGROUNDS AND AIMS: Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS: Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS: Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION: Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.


Overnutrition , Pediatric Obesity , Child , Humans , Rats , Animals , Female , Male , Overweight , Rats, Wistar , Serotonin , Overnutrition/complications , Overnutrition/metabolism , Eating , Prefrontal Cortex/metabolism , RNA, Messenger
3.
Neurochem Int ; 162: 105454, 2023 01.
Article En | MEDLINE | ID: mdl-36462683

It is well known that overnutrition, overweight, and obesity in children can modulate brain mechanisms of plasticity, monoaminergic systems, and mitochondrial function. The immediate effect of overnutrition during the developmental period has not been thoroughly examined in rats until the present. This study sought to evaluate the impact on adult rats of early life overfeeding and fluoxetine treatment from post-natal day 1 (PND1) to post-natal day 21 (PND21) relative to mitochondrial function, oxidative balance, and expression of specific monoaminergic genes in the hippocampus. The following were evaluated: mitochondrial function markers, oxidative stress biomarkers, dopamine-and serotonin-related genes, and BDNF mRNA levels. Overfeeding during the lactation period deregulates cellular metabolism and the monoaminergic systems in the hippocampus. Strikingly, serotonin modulation by fluoxetine treatment protected against some of the effects of early overnutrition. We conclude that overfeeding during brain development induce detrimental effects in mitochondria and in the genes that regulate homeostatic status that can be the molecular mechanisms related to neurological diseases.


Hippocampus , Overnutrition , Animals , Female , Rats , Fluoxetine/pharmacology , Fluoxetine/therapeutic use , Hippocampus/drug effects , Hippocampus/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Pediatric Obesity/metabolism , Serotonin/metabolism , Overnutrition/metabolism , Overnutrition/physiopathology
4.
Life Sci ; 245: 117307, 2020 Mar 15.
Article En | MEDLINE | ID: mdl-31954746

AIM: To investigate whether a chronic 5-HT reuptake inhibitor (i.e. Fluoxetine-FLX) exposure in young adult rats overfed during suckling period would modulate interscapular brown adipose tissue (iBAT) mitochondria and browning agents in white adipose tissue (WAT). METHODS: Male Wistar rats were assigned into either a normofed group (n = 9 per group) or an overfed group (n = 3 per group) induced by litter size reduction at postnatal day 3 (PND3). Pharmacological manipulation was carried out between PND39 and PND59 and groups were assigned accordingly: Normofed + vehicle solution - NaCl 0.9% (NV group), normofed + FLX solution - 10 mg/kg b.w. (NF group), overfed + vehicle (OV group) and overfed + FLX (OF group). We evaluated mitochondrial oxygen consumption and reactive species (RS) production, oxidative stress analyses (MDA concentration, carbonyl content, REDOX state [GSH/GSSG], global oxy score) in the iBAT, gene (leptin, Ucp1, Sirt1, Pgc1α and Prdm16) and protein (UCP1) expression in the iBAT and epididymal WAT (eWAT). KEY FINDINGS: OV group increased body weight gain, Lee index and oxidative stress in the iBAT. Both FLX-treated groups showed less weight gain compared to their controls. OF group showed different leptin expression in the WAT and iBAT; increased functional UCP1 content and mitochondrial activity with less oxidative stress in the iBAT and upregulation of browning genes in eWAT (Pgc1α, Prdm16 and Ucp1). CONCLUSION: Altogether our findings indicated that FLX treatment in young adult overfed animals improved the iBAT mitochondrial function, reduced oxidative stress and induced transcriptional activation of browning agents in white adipose tissue.


Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Fluoxetine/pharmacology , Mitochondria/drug effects , Overnutrition/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Body Weight/drug effects , Male , Oxygen Consumption/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , Uncoupling Protein 1/metabolism
5.
Life Sci ; 232: 116579, 2019 Sep 01.
Article En | MEDLINE | ID: mdl-31252001

AIMS: We sought to evaluate the effects of maternal protein restriction (LP) on oxidative balance and transcription factors for mitochondrial biogenesis in the hearts of young female rats of both the first (F1) and second (F2) generation. MAIN METHODS: We evaluated oxidative stress biomarkers (lipid peroxidation and protein oxidation), enzymatic antioxidant defense (activity of superoxide dismutase-SOD, catalase, and glutathione-S-transferase-GST), nonenzymatic antioxidant defense (reduced glutathione-GSH and sulfhydryl groups) and gene expression of AMPK, PGC-1α and TFAM. KEY FINDINGS: Interestingly, lipid peroxidation was decreased (49%, p < 0.001) in the LP-F1 group and 59% (p < 0.001) in LP-F2. In enzymatic defense, we observed increases in SOD activity in the LP-F1 group (79%, p = 0.036) and in CAT activity (approximately 40%, p = 0.041). GSH was increased in F2 in both groups (LP 546%, p < 0.0001 and in NP 491.7%, p < 0.0001). With respect to mitochondrial biogenesis gene transcription, we observed a decrease in AMPK (60%, p < 0. 0001) and an increase in PGC-1α (340%, p < 0.001) in LP compared to NP in the F1 generation. TFAM was decreased in LP-F2L compared to NP-F2L (42%, p = 0.0069) and increased in LP-F2 compared to LP-F1 (160%, p = 0.0037). SIGNIFICANCE: Our study contributes to knowledge of inheritance, showing that despite the potential mitochondrial 'inheritance' of cardiovascular damage caused by maternal malnutrition, that damage is not cross-generational and can be eliminated with proper nutrition in the F1 generation.


Myocardium/metabolism , Oxidative Stress/physiology , Protein-Energy Malnutrition/metabolism , Animals , Antioxidants/pharmacology , Female , Glutathione/metabolism , Heart/drug effects , Heart/physiology , Heredity/genetics , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Organelle Biogenesis , Oxidation-Reduction , Oxidative Stress/drug effects , Rats , Superoxide Dismutase/metabolism , Transcription Factors/metabolism
6.
Front Neurosci ; 13: 203, 2019.
Article En | MEDLINE | ID: mdl-30930735

Maternal protein deficiency during the critical development period of the progeny disturbs mitochondrial metabolism in the brainstem, which increases the risk of developing cardiovascular diseases in the first-generation (F1) offspring, but is unknown if this effect persists in the second-generation (F2) offspring. The study tested whether mitochondrial health and oxidative balance will be restored in F2 rats. Male and female rats were divided into six groups according to the diet fed to their mothers throughout gestation and lactation periods. These groups were: (1) normoprotein (NP) and (2) low-protein (LP) rats of the first filial generation (F1-NP and F1-LP, respectively) and (3) NP and (4) LP rats of the second filial generation (F2-NP and F2-LP, respectively). After weaning, all groups received commercial chow and a portion of each group was sacrificed on the 30th day of life for determination of mitochondrial and oxidative parameters. The remaining portion of the F1 group was mated at adulthood and fed an NP or LP diet during the periods of gestation and lactation, to produce progeny belonging to (5) F2R-NP and (6) F2R-LP group, respectively. Our results demonstrated that male F1-LP rats suffered mitochondrial impairment associated with an 89% higher production of reactive species (RS) and 137% higher oxidative stress biomarkers, but that the oxidative stress was blunted in female F1-LP animals despite the antioxidant impairment. In the second generation following F0 malnutrition, brainstem antioxidant defenses were restored in the F2-LP group of both sexes. However, F2R-LP offspring, exposed to LP in the diets of the two preceding generations displayed a RS overproduction with a concomitant decrease in mitochondrial bioenergetics. Our findings demonstrate that nutritional stress during the reproductive life of the mother can negatively affect mitochondrial metabolism and oxidative balance in the brainstem of F1 progeny, but that restoration of a normal diet during the reproductive life of those individuals leads toward a mitochondrial recovery in their own (F2) progeny. Otherwise, if protein deprivation is continued from the F0 generation and into the F1 generation, the F2 progeny will exhibit no recovery, but instead will remain vulnerable to further oxidative damage.

7.
Behav Brain Res ; 356: 62-70, 2019 01 01.
Article En | MEDLINE | ID: mdl-30099029

Serotonin (5-HT) plays a regulatory role in coordinating the neural circuits regulating energy balance, with differences in both 5-HT availability at the synapse and the activity of 5-HT receptors mediating anorectic (via POMC/CART activation) and orexigenic (via NPY/AgRP activation) responses. In conditions of overweight and obesity the control of energy balance is clearly deregulated, and serotonergic modulation appears to make a significant contribution to weight gain. Fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI) that increases 5-HT availability in the synaptic cleft may thus have potential effects on energy balance. Our aim was to use an overfeeding model to investigate the effects of chronic FLX treatment on energy balance-related parameters regulated by hypothalamic neuropeptides. Nursing male Wistar rats were assigned to normofed (9 pups/dam) or overfed (3 pups/dam) groups beginning at 3 days of age and continuing until 21 days of age, when commercial chow and water were made available ad libitum until experimental treatments were begun. From 39 through 59 days of age groups were divided according to pharmacological treatment: 1) NV group, normofed + vehicle solution (NaCl 0.9%, 10 ml/kg b.w.), 2) NF group, normofed + FLX (10 mg/kg b.w., in vehicle solution, 10 ml/kg b.w.) 3), OV, overfed + vehicle solution and 4) OF, overfed + FLX. At 60 days of age, body weight, white and brown adipose tissue content, and food intake were determined, and serum biochemical parameters and hypothalamic neuropeptide gene expression were measured. Results showed that FLX induced reductions in several murinometric indices, improvement of adipose profile, hypophagic behavior, reduction in serum parameters, and positive modulation of hypophagia-related genes. These data suggest that the beneficial effects of FLX-treatment on overfeeding-induced physical and behavioral effects in rats was due to hypothalamic alterations that led to improvement in energy balance in animals with a compromised metabolism.


Eating/drug effects , Fluoxetine/pharmacology , Obesity/drug therapy , Animals , Behavior, Animal/drug effects , Body Composition/drug effects , Body Weight/drug effects , Energy Metabolism/physiology , Hypothalamus/metabolism , Male , Neuropeptide Y/metabolism , Neuropeptides/metabolism , Obesity/metabolism , Rats , Rats, Wistar , Receptors, Serotonin/metabolism , Serotonin/metabolism , Selective Serotonin Reuptake Inhibitors/pharmacology
8.
Eur J Neurosci ; 2018 May 26.
Article En | MEDLINE | ID: mdl-29802653

The serotonin reuptake is mainly regulated by the serotonin transporters (SERTs), which are abundantly found in the raphe nuclei, located in the brainstem. Previous studies have shown that dysfunction in the SERT has been associated with several disorders, including depression and cardiovascular diseases. In this manuscript, we aimed to investigate how gender and the treatment with a serotonin selective reuptake inhibitor (SSRI) could affect mitochondrial bioenergetics and oxidative stress in the brainstem of male and female rats. Fluoxetine, our chosen SSRI, was used during the neonatal period (i.e., from postnatal Day 1 to postnatal Day 21-PND1 to PND21) in both male and female animals. Thereafter, experiments were conducted in adult rats (60 days old). Our results demonstrate that, during lactation, fluoxetine treatment modulates the mitochondrial bioenergetics in a sex-dependent manner, such as improving male mitochondrial function and female antioxidant capacity.

9.
Life Sci ; 192: 190-198, 2018 Jan 01.
Article En | MEDLINE | ID: mdl-29191645

During their reproductive years women produce significant levels of estrogens, predominantly in the form of estradiol, that are thought to play an important role in cardioprotection. Mechanisms underlying this action include both estrogen-mediated changes in gene expression, and post-transcriptional activation of protein signaling cascades in the heart and in neural centers controlling cardiovascular function, in particular, in the brainstem. There, specific neurons, especially those of the bulbar region play an important role in the neuronal control of the cardiovascular system because they control the outflow of sympathetic activity and parasympathetic activity as well as the reception of chemical and mechanical signals. In the present review, we discuss how estrogens exert their cardioprotective effect in part by modulating the actions of internally generated products of cellular oxidation such as reactive oxygen species (ROS) in brain stem neurons. The significance of this review is in integrating the literature of oxidative damage in the brain with the literature of neuroprotection by estrogen in order to better understand both the benefits and limitations of using this hormone to prevent cardiovascular disease.


Brain Chemistry/drug effects , Brain/physiopathology , Cardiotonic Agents/pharmacology , Cardiovascular Diseases/physiopathology , Estrogens/pharmacology , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Brain/drug effects , Brain/physiology , Cardiotonic Agents/therapeutic use , Cardiovascular Diseases/prevention & control , Estrogens/therapeutic use , Humans , Neuroprotective Agents/therapeutic use
...