Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Sci Total Environ ; 877: 162754, 2023 Jun 15.
Article En | MEDLINE | ID: mdl-36921858

Non-native species are spreading at an unprecedented rate over large spatial scales, with global environmental change and growth in commerce providing novel opportunities for range expansion. Assessing the pattern and rate of spread is key to the development of strategies for safeguarding against future invasions and efficiently managing existing ones. Such assessments often depend on spatial distribution data from online repositories, which can be spatially biased, imprecise, and lacking in quantity. Here, the influence of disparities between occurrence records from online data repositories and what is known of the invasion history from peer-reviewed published literature on non-native species range expansion was evaluated using 6693 records of the Pacific oyster, Magallana gigas (Thunberg, 1793), spanning 56 years of its invasion in Europe. Two measures of spread were calculated: maximum rate of spread (distance from introduction site over time) and accumulated area (spatial expansion). Results suggest that despite discrepancies between online and peer-reviewed data sources, including a paucity of records from the early invasion history in online repositories, the use of either source does not result in significantly different estimates of spread. Our study significantly improves our understanding of the European distribution of M. gigas and suggests that a combination of short- and long-range dispersal drives range expansions. More widely, our approach provides a framework for comparison of online occurrence records and invasion histories as documented in the peer-reviewed literature, allowing critical evaluation of both data sources and improving our understanding of invasion dynamics significantly.


Big Data , Ostreidae , Animals , Europe , Introduced Species
2.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Article En | MEDLINE | ID: mdl-31186360

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Biomass , Climate Change , Oceans and Seas , Animals , Aquatic Organisms/physiology , Fisheries/statistics & numerical data , Fishes/physiology , Food Chain , Models, Theoretical
...