Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Glob Chang Biol ; 27(15): 3657-3680, 2021 08.
Article En | MEDLINE | ID: mdl-33982340

Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old-growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi-deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water-stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.


Ecosystem , Rainforest , Africa , Biomass , Forests , Plant Roots , Soil , South America , Trees , Tropical Climate
2.
Article En | MEDLINE | ID: mdl-30297475

Meteorological extreme events such as El Niño events are expected to affect tropical forest net primary production (NPP) and woody growth, but there has been no large-scale empirical validation of this expectation. We collected a large high-temporal resolution dataset (for 1-13 years depending upon location) of more than 172 000 stem growth measurements using dendrometer bands from across 14 regions spanning Amazonia, Africa and Borneo in order to test how much month-to-month variation in stand-level woody growth of adult tree stems (NPPstem) can be explained by seasonal variation and interannual meteorological anomalies. A key finding is that woody growth responds differently to meteorological variation between tropical forests with a dry season (where monthly rainfall is less than 100 mm), and aseasonal wet forests lacking a consistent dry season. In seasonal tropical forests, a high degree of variation in woody growth can be predicted from seasonal variation in temperature, vapour pressure deficit, in addition to anomalies of soil water deficit and shortwave radiation. The variation of aseasonal wet forest woody growth is best predicted by the anomalies of vapour pressure deficit, water deficit and shortwave radiation. In total, we predict the total live woody production of the global tropical forest biome to be 2.16 Pg C yr-1, with an interannual range 1.96-2.26 Pg C yr-1 between 1996-2016, and with the sharpest declines during the strong El Niño events of 1997/8 and 2015/6. There is high geographical variation in hotspots of El Niño-associated impacts, with weak impacts in Africa, and strongly negative impacts in parts of Southeast Asia and extensive regions across central and eastern Amazonia. Overall, there is high correlation (r = -0.75) between the annual anomaly of tropical forest woody growth and the annual mean of the El Niño 3.4 index, driven mainly by strong correlations with anomalies of soil water deficit, vapour pressure deficit and shortwave radiation.This article is part of the discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


El Nino-Southern Oscillation , Forests , Trees/growth & development , Tropical Climate , Africa , Borneo , Brazil , Droughts , Seasons
3.
New Phytol ; 214(3): 1019-1032, 2017 May.
Article En | MEDLINE | ID: mdl-27768811

Why do forest productivity and biomass decline with elevation? To address this question, research to date generally has focused on correlative approaches describing changes in woody growth and biomass with elevation. We present a novel, mechanistic approach to this question by quantifying the autotrophic carbon budget in 16 forest plots along a 3300 m elevation transect in Peru. Low growth rates at high elevations appear primarily driven by low gross primary productivity (GPP), with little shift in either carbon use efficiency (CUE) or allocation of net primary productivity (NPP) between wood, fine roots and canopy. The lack of trend in CUE implies that the proportion of photosynthate allocated to autotrophic respiration is not sensitive to temperature. Rather than a gradual linear decline in productivity, there is some limited but nonconclusive evidence of a sharp transition in NPP between submontane and montane forests, which may be caused by cloud immersion effects within the cloud forest zone. Leaf-level photosynthetic parameters do not decline with elevation, implying that nutrient limitation does not restrict photosynthesis at high elevations. Our data demonstrate the potential of whole carbon budget perspectives to provide a deeper understanding of controls on ecosystem functioning and carbon cycling.


Altitude , Carbon/metabolism , Forests , Tropical Climate , Autotrophic Processes , Carbon Cycle , Photosynthesis
4.
Proc Natl Acad Sci U S A ; 113(3): 793-7, 2016 Jan 19.
Article En | MEDLINE | ID: mdl-26711984

Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.


Climate Change , Ecosystem , Biomass , Brazil , Dehydration , Remote Sensing Technology , Seasons , Soil
5.
Glob Chang Biol ; 21(6): 2283-95, 2015 Jun.
Article En | MEDLINE | ID: mdl-25640987

Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.


Carbon Cycle , Forests , Photosynthesis , Trees/growth & development , Trees/metabolism , Animals , Biomass , Carbon/metabolism , Droughts , Models, Theoretical , South America , Tropical Climate
6.
Ecology ; 95(8): 2192-201, 2014 Aug.
Article En | MEDLINE | ID: mdl-25230470

What determines the seasonal and interannual variation of growth rates in trees in a tropical forest? We explore this question with a novel four-year high-temporal-resolution data set of carbon allocation from two forest plots in the Bolivian Amazon. The forests show strong seasonal variation in tree wood growth rates, which are largely explained by shifts in carbon allocation, and not by shifts in total productivity. At the deeper soil plot, there was a clear seasonal trade-off between wood and canopy NPP, while the shallower soils plot showed a contrasting seasonal trade-off between wood and fine roots. Although a strong 2010 drought reduced photosynthesis, NPP remained constant and increased in the six-month period following the drought, which indicates usage of significant nonstructural carbohydrate stores. Following the drought, carbon allocation increased initially towards the canopy, and then in the following year, allocation increased towards fine-root production. Had we only measured woody growth at these sites and inferred total NPP, we would have misinterpreted both the seasonal and interannual responses. In many tropical forest ecosystems, we propose that changing tree growth rates are more likely to reflect shifts in allocation rather than changes in overall productivity. Only a whole NPP allocation perspective can correctly interpret the relationship between changes in growth and changes in productivity.


Droughts , Ecosystem , Seasons , Trees , Tropical Climate , Animals , Bolivia , Environmental Monitoring , Models, Biological , Rain , Time Factors
7.
Ecol Lett ; 17(3): 324-32, 2014 Mar.
Article En | MEDLINE | ID: mdl-24372865

The functional role of herbivores in tropical rainforests remains poorly understood. We quantified the magnitude of, and underlying controls on, carbon, nitrogen and phosphorus cycled by invertebrate herbivory along a 2800 m elevational gradient in the tropical Andes spanning 12°C mean annual temperature. We find, firstly, that leaf area loss is greater at warmer sites with lower foliar phosphorus, and secondly, that the estimated herbivore-mediated flux of foliar nitrogen and phosphorus from plants to soil via leaf area loss is similar to, or greater than, other major sources of these nutrients in tropical forests. Finally, we estimate that herbivores consume a significant portion of plant carbon, potentially causing major shifts in the pattern of plant and soil carbon cycling. We conclude that future shifts in herbivore abundance and activity as a result of environmental change could have major impacts on soil fertility and ecosystem carbon sequestration in tropical forests.


Carbon Cycle/physiology , Ecosystem , Food , Herbivory/physiology , Models, Biological , Plant Leaves/chemistry , Trees , Animals , Peru , Spectrum Analysis , Tropical Climate
8.
Oecologia ; 172(3): 889-902, 2013 Jul.
Article En | MEDLINE | ID: mdl-23180422

We report results from a large-scale nutrient fertilization experiment along a "megadiverse" (154 unique species were included in the study) 3,000-m elevation transect in the Peruvian Andes and adjacent lowland Amazonia. Our objectives were to test if nitrogen (N) and phosphorus (P) limitation shift along this elevation gradient, and to determine how an alleviation of nutrient limitation would manifest in ecosystem changes. Tree height decreased with increasing elevation, but leaf area index (LAI) and diameter at breast height (DBH) did not vary with elevation. Leaf N:P decreased with increasing elevation (from 24 at 200 m to 11 at 3,000 m), suggesting increased N limitation and decreased P limitation with increasing elevation. After 4 years of fertilization (N, P, N + P), plots at the lowland site (200 m) fertilized with N + P showed greater relative growth rates in DBH than did the control plots; no significant differences were evident at the 1,000 m site, and plots fertilized with N at the highest elevation sites (1,500, 3,000 m) showed greater relative growth rates in DBH than did the control plots, again suggesting increased N constraint with elevation. Across elevations in general N fertilization led to an increase in microbial respiration, while P and N + P addition led to an increase in root respiration and corresponding decrease in hyphal respiration. There was no significant canopy response (LAI, leaf nutrients) to fertilization, suggesting that photosynthetic capacity was not N or P limited in these ecosystems. In sum, our study significantly advances ecological understanding of nutrient cycling and ecosystem response in a region where our collective knowledge and data are sparse: we demonstrate N limitation in high elevation tropical montane forests, N and P co-limitation in lowland Amazonia, and a nutrient limitation response manifested not in canopy changes, but rather in stem and belowground changes.


Rain , Trees , Peru
9.
Glob Chang Biol ; 18(9): 2882-98, 2012 Sep.
Article En | MEDLINE | ID: mdl-24501065

A better understanding of the mechanisms controlling the magnitude and sign of carbon components in tropical forest ecosystems is important for reliable estimation of this important regional component of the global carbon cycle. We used the JULES vegetation model to simulate all components of the carbon balance at six sites along an Andes-Amazon transect across Peru and Brazil and compared the results to published field measurements. In the upper montane zone the model predicted a lack of forest vegetation, indicating a need for better parameterization of the responses of cloud forest vegetation within the model. In the lower montane and lowland zones simulated ecosystem productivity and respiration were predicted with reasonable accuracy, although not always within the error bounds of the observations. Model-predicted carbon use efficiency in this transect surprisingly did not increase with elevation, but remained close to the 'temperate' value 0.5. Upper montane forests were predicted to allocate ~50% of carbon fixation to biomass maintenance and growth, despite available measurements showing that they only allocate ~33%. This may be explained by elevational changes in the balance between growth and maintenance respiration within the forest canopy, as controlled by both temperature- and pressure-mediated processes, which is not yet well represented in current vegetation models.

10.
Oecologia ; 152(3): 495-504, 2007 Jun.
Article En | MEDLINE | ID: mdl-17333287

The stocks and dynamics of coarse woody debris (CWD) are significant components of the carbon cycle within tropical forests. However, to date, there have been no reports of CWD stocks and fluxes from the approximately 1.3 million km(2) of lowland western Amazonian forests. Here, we present estimates of CWD stocks and annual CWD inputs from forests in southern Peru. Total stocks were low compared to other tropical forest sites, whether estimated by line-intercept sampling (24.4 +/- 5.3 Mg ha(-1)) or by complete inventories within 11 permanent plots (17.7 +/- 2.4 Mg ha(-1)). However, annual inputs, estimated from long-term data on tree mortality rates in the same plots, were similar to other studies (3.8 +/- 0.2 or 2.9 +/- 0.2 Mg ha(-1) year(-1), depending on the equation used to estimate biomass). Assuming the CWD pool is at steady state, the turnover time of coarse woody debris is low (4.7 +/- 2.6 or 6.1 +/- 2.6 years). These results indicate that these sites have not experienced a recent, large-scale disturbance event and emphasise the distinctive, rapid nature of carbon cycling in these western Amazonian forests.


Trees/growth & development , Biomass , Carbon/chemistry , Disasters , Geography , Peru
...