Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1332959, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38720938

RESUMEN

Maternal nutrition during embryonic development and lactation influences multiple aspects of offspring health. Using mice, this study investigates the effects of maternal caloric restriction (CR) during mid-gestation and lactation on offspring neonatal development and on adult metabolic function when challenged by a high fat diet (HFD). The CR maternal model produced male and female offspring that were significantly smaller, in terms of weight and length, and females had delayed puberty. Adult offspring born to CR dams had a sexually dimorphic response to the high fat diet. Compared to offspring of maternal control dams, adult female, but not male, CR offspring gained more weight in response to high fat diet at 10 weeks. In adipose tissue of male HFD offspring, maternal undernutrition resulted in blunted expression of genes associated with weight gain and increased expression of genes that protect against weight gain. Regardless of maternal nutrition status, HFD male offspring showed increased expression of genes associated with progression toward nonalcoholic fatty liver disease (NAFLD). Furthermore, we observed significant, sexually dimorphic differences in serum TSH. These data reveal tissue- and sex-specific changes in gene and hormone regulation following mild maternal undernutrition, which may offer protection against diet induced weight gain in adult male offspring.


Asunto(s)
Dieta Alta en Grasa , Desnutrición , Fenómenos Fisiologicos Nutricionales Maternos , Efectos Tardíos de la Exposición Prenatal , Aumento de Peso , Animales , Femenino , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratones Endogámicos C57BL , Restricción Calórica/efectos adversos , Animales Recién Nacidos , Lactancia
2.
J Endocrinol ; 247(3): 213-224, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33112825

RESUMEN

Anterior pituitary somatotropes are important metabolic sensors responding to leptin by secreting growth hormone (GH). However, reduced leptin signals caused by fasting have not always correlated with reduced serum GH. Reports show that fasting may stimulate or reduce GH secretion, depending on the species. Mechanisms underlying these distinct somatotrope responses to fasting remain unknown. To define the somatotrope response to decreased leptin signaling we examined markers of somatotrope function over different time periods of fasting. Male mice were fasted for 24 and 48 h, with female mice fasted for 24 h compared to fed controls ad libitum. Body weight and serum glucose were reduced in both males and females, but, unexpectedly, serum leptin was reduced only in males. Furthermore, in males, serum GH levels showed a biphasic response with significant reductions at 24 h followed by a significant rise at 48 h, which coincided with the rise in serum ghrelin levels. In contrast, females showed an increase in serum GH at 24 h. We then explored mechanisms underlying the differential somatotrope responses seen in males and observed that pituitary levels of Gh mRNA increased, with no distinction between acute and prolonged fasting. By contrast, the Ghrhr mRNA (encoding GH releasing hormone receptor) and the Ghsr mRNA (encoding the ghrelin receptor) were both greatly increased at prolonged fasting times coincident with increased serum GH. These findings show sex differences in the somatotrope and adipocyte responses to fasting and support an adaptive role for somatotropes in males in response to multiple metabolic signals.


Asunto(s)
Ayuno/metabolismo , Ghrelina/sangre , Hormona Liberadora de Hormona del Crecimiento/metabolismo , Hormona del Crecimiento/sangre , Leptina/sangre , Adenohipófisis/metabolismo , Receptores de Ghrelina/metabolismo , Animales , Femenino , Hormona Liberadora de Hormona del Crecimiento/genética , Masculino , Ratones , Receptores de Ghrelina/genética , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA