Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Med Chem Lett ; 15(4): 493-500, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38628799

RESUMEN

Utilizing a scaffold-hopping strategy from the drug candidate telacebec, a novel series of 2-(quinolin-4-yloxy)acetamides was synthesized and evaluated as inhibitors of Mycobacterium tuberculosis (Mtb) growth. These compounds demonstrated potent activity against drug-sensitive and multidrug-resistant strains (MIC ≤ 0.02 µM). Leading compounds were evaluated against a known qcrB resistant strain (T313A), and their loss in activity suggested that the cytochrome bc1 complex is the likely target. Additionally, these structures showed high selectivity regarding mammalian cells (selectivity index > 500) and stability across different aqueous media. Furthermore, some of the synthesized quinolines demonstrated aqueous solubility values that exceeded those of telacebec, while maintaining low rates of metabolism. Finally, a selected compound prevented Mtb growth by more than 1.7 log10 colony forming units in a macrophage model of tuberculosis (TB) infection. These findings validate the proposed design and introduce new 2-(quinolin-4-yloxy)acetamides with potential for development in TB drug discovery campaigns.

2.
Molecules ; 27(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35458755

RESUMEN

Tuberculosis remains a global health problem that affects millions of people around the world. Despite recent efforts in drug development, new alternatives are required. Herein, a series of 27 N-(4-(benzyloxy)benzyl)-4-aminoquinolines were synthesized and evaluated for their ability to inhibit the M. tuberculosis H37Rv strain. Two of these compounds exhibited minimal inhibitory concentrations (MICs) similar to the first-line drug isoniazid. In addition, these hit compounds were selective for the bacillus with no significant change in viability of Vero and HepG2 cells. Finally, chemical stability, permeability and metabolic stability were also evaluated. The obtained data show that the molecular hits can be optimized aiming at the development of drug candidates for tuberculosis treatment.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Aminoquinolinas/farmacología , Antituberculosos/química , Humanos , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA