Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Respir Med ; 92(4): 278-290, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39051189

RESUMEN

AIM: Physical activity attenuates hypertension in older adults, but its impact on pulmonary function and mechanics in hypertensive older adults is unknown. The study seeks to understand whether a physically active lifestyle can improve respiratory capacity, the mechanical efficiency of the lungs, and, consequently, the quality of life of these individuals, comparing data between groups of active and sedentary hypertensive older adults. METHODS: This is a cross-sectional study. We evaluated 731 older adults, stratified into two initial groups: hypertensive older adults (HE; n = 445) and non-hypertensive older adults (NHE; n = 286). For a secondary analysis, we used the International Physical Activity Questionnaire to sub-stratify HE and NHE into four groups: physically inactive hypertensive (PIH; n = 182), active hypertensive (AH; n = 110), physically inactive non-hypertensive (PINH; n = 104), and active non-hypertensive (ANH; n = 65). Lung function was measured by spirometry, and lung mechanics were assessed by impulse oscillometry. RESULTS: Hypertensive older adults presented reduced lung function compared to non-hypertensive older adults, and physical inactivity accentuated this decline. Regarding pulmonary mechanics, hypertensive older adults had higher resistance of the entire respiratory system (R5 Hz), the central airways (R20 Hz), and peripheral airways (R5-20 Hz), which may trigger bronchoconstriction. CONCLUSIONS: Hypertension is associated with impaired lung function and mechanics in older adults, and a physically active lifestyle attenuates these dysfunctions.


Asunto(s)
Ejercicio Físico , Hipertensión , Humanos , Hipertensión/fisiopatología , Estudios Transversales , Anciano , Masculino , Ejercicio Físico/fisiología , Femenino , Pruebas de Función Respiratoria , Mecánica Respiratoria/fisiología , Pulmón/fisiopatología , Calidad de Vida , Persona de Mediana Edad
2.
Mol Biol Rep ; 51(1): 499, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598121

RESUMEN

INTRODUCTION: Aerobic physical training (APT) reduces eosinophilic airway inflammation, but its effects and mechanisms in severe asthma remain unknown. METHODS: An in vitro study employing key cells involved in the pathogenesis of severe asthma, such as freshly isolated human eosinophils, neutrophils, and bronchial epithelial cell lineage (BEAS-2B) and lung fibroblasts (MRC-5 cells), was conducted. Additionally, an in vivo study using male C57Bl/6 mice, including Control (Co; n = 10), Trained (Exe; n = 10), house dust mite (HDM; n = 10), and HDM + Trained (HDM + Exe; n = 10) groups, was carried out, with APT performed at moderate intensity, 5x/week, for 4 weeks. RESULTS: HDM and bradykinin, either alone or in combination, induced hyperactivation in human neutrophils, eosinophils, BEAS-2B, and MRC-5 cells. In contrast, IL-10, the primary anti-inflammatory molecule released during APT, inhibited these inflammatory effects, as evidenced by the suppression of numerous cytokines and reduced mRNA expression of the B1 receptor and ACE-2. The in vivo study demonstrated that APT decreased bronchoalveolar lavage levels of bradykinin, IL-1ß, IL-4, IL-5, IL-17, IL-33, TNF-α, and IL-13, while increasing levels of IL-10, klotho, and IL-1RA. APT reduced the accumulation of polymorphonuclear cells, lymphocytes, and macrophages in the peribronchial space, as well as collagen fiber accumulation, epithelial thickness, and mucus accumulation. Furthermore, APT lowered the expression of the B1 receptor and ACE-2 in lung tissue and reduced bradykinin levels in the lung tissue homogenate compared to the HDM group. It also improved airway resistance, tissue resistance, and tissue damping. On a systemic level, APT reduced total leukocytes, eosinophils, neutrophils, basophils, lymphocytes, and monocytes in the blood, as well as plasma levels of IL-1ß, IL-4, IL-5, IL-17, TNF-α, and IL-33, while elevating the levels of IL-10 and IL-1RA. CONCLUSION: These findings indicate that APT inhibits the severe asthma phenotype by targeting kinin signaling.


Asunto(s)
Asma , Bradiquinina , Humanos , Animales , Ratones , Masculino , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-17 , Interleucina-33 , Interleucina-4 , Interleucina-5 , Factor de Necrosis Tumoral alfa
3.
Nutrients ; 16(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337668

RESUMEN

Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Lipopolisacáridos , Humanos , Lipopolisacáridos/farmacología , Ácido Ascórbico/farmacología , Receptores Purinérgicos P2X7 , Autofagia , Adenosina Trifosfato/farmacología
4.
Biomed Pharmacother ; 159: 114263, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36652732

RESUMEN

Leukemia is among the most common types of hematological cancers and the use of herbal medicines to prevent and treat leukemia are under quick development. Among several molecular pathways involved in leukemia pathogenesis and exacerbations, purinergic signaling is revealed as a key component. In the present study, the effects of two doses (5 ug/mL and 10 ug/mL) of Immunity-6™, a phytocomplex composed by beta-glucan, green tea (Camelia sinensis), chamomile (Matricaria chamomilla), and ascorbic acid (vitamin C) was tested in vitro, using chronic myelogenous leukemia cell line (K-562; 5 ×104/mL/well), which were challenged with lipopolysaccharide (LPS; 1 ug/mL) for 24 h. The results demonstrated that both doses of Immunity-6™ inhibited ATP release (p < 0.001) and P2×7 receptor at mRNA levels expression (p < 0.001). Purinergic inhibition by Immunity-6™ was followed by reduced release of proinflammatory cytokines IL-1beta (p < 0.001) and IL-6 (p < 0.001), while only 5 ug/mL of Immunity-6™ reduced the release of TNF-alpha (p < 0.001). Beyond to inhibit the release of pro-inflammatory cytokines, both doses of Immunity-6™ induced the release of anti-inflammatory cytokine IL-10 (p < 0.001), while only the higher dose (10 ug/mL) of Immunity-6™ induced the release of anti-inflammatory IL-1ra (p < 0.05) and klotho (p < 0.001). Thus, Immunity-6™ may be a promising adjuvant in the treatment of leukemia and further clinical trials are guaranteed.


Asunto(s)
Citocinas , Leucemia , Fitoterapia , Humanos , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Leucemia/tratamiento farmacológico , Lipopolisacáridos/farmacología , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Diet Suppl ; 20(2): 156-170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35930300

RESUMEN

Even after virus elimination, numerous sequelae of coronavirus disease 2019 (COVID-19) persist. Based on accumulating evidence, large amounts of proinflammatory cytokines are released to drive COVID-19 progression, severity, and mortality, and their levels remain elevated after the acute phase of COVID-19, playing a central role in the disease' sequelae. In this manner, bronchial epithelial cells are the first cells hyperactivated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leading to massive cytokine release, triggering the hyperactivation of leukocytes and other cells, and mediating COVID-19 sequelae. Therefore, proinflammatory cytokine production is initiated by the host. This in vitro study tested the hypothesis that ImmuneRecov™, a nutritional blend, inhibits the SARS-CoV-2-induced hyperactivation of human bronchial epithelial cells (BEAS-2B). BEAS-2B (5x104/mL/well) cells were cocultivated with 1 ml of blood from a SARS-CoV-2-infected patient for 4 h, and the nutritional blend (1 µg/mL) was added in the first minute of coculture. After 4 h, the cells were recovered and used for analyses of cytotoxicity with the (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) (MTT) assay and the expression of the IL-1ß, IL-6, and IL-10 mRNAs. The supernatant was collected to measure cytokine levels. SARS-CoV-2 incubation resulted in increased levels of IL-1ß and IL-6 in BEAS-2B cells (p < 0.001). Treatment with the nutritional blend resulted in reduced levels of the proinflammatory cytokines IL-1ß and IL-6 (p < 0.001) and increased levels of the anti-inflammatory cytokine IL-10 (p < 0.001). Additionally, the nutritional blend reduced the expression of the IL-1ß and IL-6 mRNAs in SARS-CoV-2-stimulated cells and increased the expression of the IL-10 and IFN-γ mRNAs. In conclusion, the nutritional blend exerts important anti-inflammatory effects on cells in the context of SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Interleucina-10 , Interleucina-6 , Citocinas/metabolismo , Células Epiteliales/metabolismo , Antiinflamatorios
6.
Oxid Med Cell Longev ; 2022: 5037553, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36312895

RESUMEN

Several benefits of aerobic training for asthmatic patients have been demonstrated. However, its effects on systemic inflammation and on airway remodeling mediators and lung mechanics are unknown. This prospective study included 21 intermittent and mild asthma patients, and as primary outcomes, the evaluation of pro- and anti-inflammatory and pro- and antifibrotic mediators in exhaled breath condensate (EBC) and blood were performed, beyond the cell counting in blood and in induced sputum. Aerobic training was performed for 3 months, 3 times per week. Aerobic training increased the levels of anti-inflammatory cytokines and of antifibrotic mediators in the breath condensate: IL-1ra (p = 0.0488), IL-10 (p = 0.0048), relaxin-3 (p = 0.0019), and klotho (p < 0.0043), respectively. Similarly, in plasma, increased levels of IL-1ra (p = 0.0147), IL-10 (p < 0.0001), relaxin-3 (p = 0.004), and klotho (p = 0.0023) were found. On contrary, reduced levels of proinflammatory cytokines in the breath condensate, IL-1ß (p = 0.0008), IL-4 (p = 0.0481), IL-5 (p < 0.0001), IL-6 (p = 0.0032), IL-13 (p = 0.0013), and TNF-α (p = 0.0001) and profibrotic markers VEGF (p = 0.0017) and TSLP (p = 0.0056) were found. Similarly, in plasma, aerobic training significantly reduced the levels of proinflammatory cytokines IL-1ß (p = 0.0008), IL-4 (p = 0.0104), IL-5 (p = 0.0001), IL-6 (p = 0.006), IL-13 (p = 0.0341), and TNF-α (p = 0.0003) and of profibrotic markers VEGF (p = 0.0009) and TSLP (p < 0.0076). Fractional exhaled nitric oxide (FeNO) was reduced after the intervention (p = 0.0313). Regarding inflammatory cells in sputum, there was a reduction in total cells (p = 0.008), eosinophils (p = 0.009), and macrophages (p = 0.020), as well as of blood eosinophils (p = 0.0203) and lymphocytes (p = 0.0198). Aerobic training positively modulates chronic airway inflammation and remodeling mediators, beyond to improve systemic inflammation in intermittent and mild asthmatic patients.


Asunto(s)
Asma , Relaxina , Humanos , Espiración , Pruebas Respiratorias , Interleucina-13 , Interleucina-10 , Proteína Antagonista del Receptor de Interleucina 1 , Factor de Necrosis Tumoral alfa , Interleucina-6 , Interleucina-4 , Estudios Prospectivos , Factor A de Crecimiento Endotelial Vascular , Interleucina-5 , Óxido Nítrico , Asma/terapia , Citocinas , Inflamación , Pulmón
7.
Front Physiol ; 13: 946402, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36160852

RESUMEN

Background: Obesity impairs lung function and mechanics and leads to low-grade inflammation, but the effects of combined physical exercise (CPE) on that are unknown. Methods: We investigated the effects of 12 weeks of combined physical exercise (aerobic + resistance training), in non-obese (n = 12), overweight (n = 17), and obese grade I (n = 11) women. Lung function and lung mechanics were evaluated. The systemic immune response was evaluated by whole blood analysis and biomarker measurements, while pulmonary fibrotic biomarkers were evaluated in the breath condensate. Result: CPE improved forced vital capacity (FVC) % (p < 0.001) and peak expiratory flow (PEF) % (p < 0.0003) in the obese group; resistance of the respiratory system (R5Hz) in non-obese (p < 0.0099), overweight (p < 0.0005), and obese (p < 0.0001) groups; resistance of proximal airways (R20Hz) in non-obese (p < 0.01), overweight (p < 0.0009), and obese (p < 0.0001) groups; resistance of distal airways (R5Hz-R20Hz) in non-obese (p < 0.01), overweight (p < 0.0012), and obese (p < 0.0001) groups; reactance of the respiratory system (X5Hz) in non-obese (p < 0.01), overweight (p < 0.0006), and obese (p < 0.0005) groups; impedance of the respiratory system (Z5Hz) in non-obese (p < 0.0099), overweight (p < 0.0005), and obese (p < 0.0001) groups; central resistance (RCentral) in non-obese (p < 0.01), overweight (p < 0.001), and obese (p < 0.0003) groups; and the peripheral resistance (RPeripheral) in non-obese (p < 0.03), overweight (p < 0.001), and obese (p < 0.0002) groups. CPE reduced the pro-fibrotic IGF-1 levels in BC in overweight (p < 0.0094) and obese groups (p < 0.0001) and increased anti-fibrotic Klotho levels in BC in obese (p < 0.0001) groups, and reduced levels of exhaled nitric oxide in overweight (p < 0.03) and obese (p < 0.0001) groups. Conclusion: CPE improves lung function, mechanics, and pulmonary immune response in overweight and obese grade I women by increasing anti-fibrotic protein Klotho and reducing pro-fibrotic IGF-1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA