Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nutrients ; 13(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34684356

RESUMEN

BACKGROUND: Carotenoids and docosahexaenoic acid (DHA) were identified as essential components for eye health and are both naturally present in eggs. OBJECTIVE: We aimed to evaluate the effect of the daily consumption of two eggs enriched with lutein/zeaxanthin and DHA on macular pigment optical density (MPOD) and on circulating xanthophyll and fatty acid concentrations in healthy participants. METHODS: Ninety-nine healthy volunteers consumed either two standard eggs or two enriched eggs per day for 4 months. MPOD was measured at baseline (V0) and at follow-up (V4) using a modified confocal scanning laser ophthalmoscope (primary outcome). Blood samples were collected to determine total plasma and lipoprotein fatty acids and lutein/zeaxanthin compositions at V0 and V4 (secondary outcomes). RESULTS: A slight but significant increase in MPOD was observed for all study participants consuming two eggs per day for 4 months at all eccentricities (0.5°, 1°, 2°, and 4°). Plasma and lipoprotein lutein, zeaxanthin, and DHA concentrations significantly increased in both groups but were greater in the enriched group (for the enriched group (V0 vs. V4): lutein, 167 vs. 369 ng/mL; zeaxanthin, 17.7 vs. 29.2 ng/mL; DHA, 1.89 vs. 2.56% of total fatty acids). Interestingly, lutein from high-density lipoprotein (HDL) was strongly correlated with MPOD at 0.5 and 1° eccentricities (rho = 0.385, p = 0.008, and rho = 0.461, p = 0.001, respectively). CONCLUSIONS: MPOD was slightly increased in both groups. Lutein, zeaxanthin, and DHA plasma concentrations were strongly enhanced in the enriched group compared with the standard group. A significant correlation was found between MPOD level and lutein concentration in HDL.


Asunto(s)
Ácidos Docosahexaenoicos/sangre , Alimentos Fortificados , Luteína/sangre , Pigmento Macular/sangre , Adulto , Eritrocitos/metabolismo , Femenino , Humanos , Lipoproteínas/sangre , Masculino , Fenómenos Ópticos , Cooperación del Paciente , Xantófilas/sangre , Adulto Joven , Zeaxantinas/sangre
2.
Front Immunol ; 11: 579000, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162994

RESUMEN

The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Encéfalo/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Interleucinas/antagonistas & inhibidores , Microglía/efectos de los fármacos , Degeneración Nerviosa , Enfermedades por Prión/tratamiento farmacológico , Animales , Anticuerpos Monoclonales/toxicidad , Anticuerpos Neutralizantes/toxicidad , Encéfalo/metabolismo , Encéfalo/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Genes fms , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucinas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Transducción de Señal
3.
Biol Open ; 6(10): 1528-1540, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870996

RESUMEN

Drosophila Vestigial is the founding member of a protein family containing a highly conserved domain, called Tondu, which mediates their interaction with members of the TEAD family of transcription factors (Scalloped in Drosophila). In Drosophila, the Vestigial/Scalloped complex controls wing development by regulating the expression of target genes through binding to MCAT sequences. In vertebrates, there are four Vestigial-like genes, the functions of which are still not well understood. Here, we describe the regulation and function of vestigial-like 3 (vgll3) during Xenopus early development. A combination of signals, including FGF8, Wnt8a, Hoxa2, Hoxb2 and retinoic acid, limits vgll3 expression to hindbrain rhombomere 2. We show that vgll3 regulates trigeminal placode and nerve formation and is required for normal neural crest development by affecting their migration and adhesion properties. At the molecular level, vgll3 is a potent activator of pax3, zic1, Wnt and FGF, which are important for brain patterning and neural crest cell formation. Vgll3 interacts in the embryo with Tead proteins but unexpectedly with Ets1, with which it is able to stimulate a MCAT driven luciferase reporter gene. Our findings highlight a critical function for vgll3 in vertebrate early development.

4.
Front Aging Neurosci ; 9: 207, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28690540

RESUMEN

Inflammation is a major component of neurodegenerative diseases. Microglia are the innate immune cells in the central nervous system (CNS). In the healthy brain, microglia contribute to tissue homeostasis and regulation of synaptic plasticity. Under disease conditions, they play a key role in the development and maintenance of the neuroinflammatory response, by showing enhanced proliferation and activation. Prion diseases are progressive chronic neurodegenerative disorders associated with the accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC. This review article provides the current knowledge on the role of microglia in the pathogenesis of prion disease. A large body of evidence shows that microglia can trigger neurotoxic pathways contributing to progressive degeneration. Yet, microglia are also crucial for controlling inflammatory, repair and regenerative processes. This dual role of microglia is regulated by multiple pathways and evidences the ability of these cells to polarize into distinct phenotypes with characteristic functions. The awareness that the neuroinflammatory response is inextricably involved in producing tissue damage as well as repair in neurodegenerative disorders, opens new perspectives for the modulation of the immune system. A better understanding of this complex process will be essential for developing effective therapies for neurodegenerative diseases, in order to improve the quality of life of patients and mitigating the personal, economic and social consequences derived from these diseases.

5.
Dev Genes Evol ; 226(4): 297-315, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27116603

RESUMEN

The members of the vestigial-like gene family have been identified as homologs of the Drosophila vestigial, which is essential to wing formation. All members of the family are characterized by the presence of the TONDU domain, a highly conserved sequence that mediates their interaction with the transcription factors of the TEAD family. Mammals possess four vestigial-like genes that can be subdivided into two classes, depending on the number of Tondu domains present. While vestigial proteins have been studied in great depth in Drosophila, we still have sketchy knowledge of the functions of vestigial-like proteins in vertebrates. Recent studies have unveiled unexpected functions for some of these members and reveal the role they play in the Hippo pathway. Here, we present the current knowledge about vestigial-like family gene members and their functions, together with their identification in different taxa.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Evolución Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Animales , Proteínas Portadoras , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Expresión Génica , Regulación de la Expresión Génica , Humanos , Proteínas Musculares/genética , Proteínas Nucleares/química , Dominios Proteicos , Factores de Transcripción/genética
6.
Exp Eye Res ; 93(5): 628-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21821023

RESUMEN

Age-related macular degeneration (AMD) may be partially prevented by dietary habits privileging the consumption of ω3 long chain polyunsaturated fatty acids (ω3s) while lowering linoleic acid (LA) intake. The present study aimed to document whether following these epidemiological guidelines would enrich the neurosensory retina and RPE with ω3s and modulate gene expression in the neurosensory retina. Rat progenitors and pups were fed with diets containing low or high LA, and low or high ω3s. After scotopic single flash and 8-Hz-Flicker electroretinography, rat pups were euthanized at adulthood. The fatty acid profile of the neurosensory retina, RPE, liver, adipose tissue and plasma was analyzed using gas chromatography. Gene expression was analyzed with real-time PCR in the neurosensory retina. Diets rich in ω3s efficiently improved the incorporation of ω3s into the organs and tissues. This raising effect was magnified by lowering LA intake. Compared to a diet with high LA and low ω3s, low LA diets significantly upregulated LDL-receptor gene expression. Similar but not significant upregulation of CD36, ABCA1, ALOX5 and ALOX12 gene expression was observed in rats fed with low LA. No effect was observed on retinal function. Increasing the intake in ω3s and lowering LA improved the enrichment with ω3s of the tissues, including the neurosensory retina and RPE, and upregulated genes involved in lipid trafficking in the neurosensory retina. Those results consistently reinforced the beneficial role of ω3s in the prevention of AMD, especially when the diet contained low levels of LA, as suggested from epidemiological data.


Asunto(s)
Grasas Insaturadas en la Dieta/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Regulación de la Expresión Génica/fisiología , Ácido Linoleico/administración & dosificación , Retina/metabolismo , Proteínas Activadoras de la 5-Lipooxigenasa/genética , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Tejido Adiposo/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/genética , Antígenos CD36/genética , Cromatografía de Gases , Electrorretinografía , Femenino , Hígado/metabolismo , Masculino , Estimulación Luminosa , ARN Mensajero/metabolismo , Ratas , Ratas Long-Evans , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de LDL/genética , Células Ganglionares de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA