Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Commun Chem ; 6(1): 65, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024672

RESUMEN

Nucleic acids aptamers often fail to efficiently target some proteins because of the hydrophilic character of the natural nucleotides. Here we present hydrophobic 7-phenylbutyl-7-deaadenine-modified DNA aptamers against the Heat Shock Protein 70 that were selected via PEX and magnetic bead-based SELEX. After 9 rounds of selection, the pool was sequenced and a number of candidates were identified. Following initial screening, two modified aptamers were chemically synthesised in-house and their binding affinity analysed by two methods, bio-layer interferometry and fluorescent-plate-based binding assay. The binding affinities of the modified aptamers were compared with that of their natural counterparts. The resulting modified aptamers bound with higher affinity (low nanomolar range) to the Hsp70 than their natural sequence (>5 µM) and hence have potential for applications and further development towards Hsp70 diagnostics or even therapeutics.

2.
J Photochem Photobiol B ; 209: 111939, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32640366

RESUMEN

Despite progress in the development and application of novel therapeutic agents, cancer remains a major cause of death worldwide. Therefore, there is a need for new approaches to increase therapeutic options and efficiency. The metabolism of cancer cells differs from that of non-malignant cells and their mitochondria show altered activities that can be utilized as a target for drug development. Salt 1 is a low-molecular weight heterocyclic compound of the polymethine class that accumulates in the mitochondria of cancer cells and selectively disrupts their metabolism. Salt 1 leads to a non-apoptotic form of cell death in vitro that is associated with an autophagic cellular response and eventual metabolic collapse, and inhibits human tumor xenograft growth in vivo without apparent toxicity for normal cells. As a pentamethinium compound, salt 1 exhibits intrinsic fluorescence and is a candidate for photosensitization after excitation by appropriate wavelengths of light. Herein, we report that salt 1 is a potent photosensitizer, which generates a photodynamic effect and provides enhanced cytotoxicity compared to salt 1 without light exposure. Importantly, photosensitization is optimally induced by red light, which is used clinically for photosensitization and penetrates further into tissues than lower wavelengths. Cancer cells treated with non-cytotoxic doses of salt 1 and subsequently exposed to 630 nm light show severely damaged mitochondria, manifested by reduced mitochondrial membrane potential and disintegration of the mitochondrial tubular network. As a consequence, cancer cells lose their proliferative potential and die via apoptosis in the presence of light. These findings indicate that salt 1 is a promising photosensitizer with potential to be combined with 630 nm light to strengthen its efficacy in cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Compuestos de Bis-Trimetilamonio/farmacología , Mitocondrias/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Humanos , Mitocondrias/fisiología , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Sales (Química)/química
3.
J Biol Chem ; 295(27): 8928-8944, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32371396

RESUMEN

Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP72/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Células MCF-7 , Proteínas de Transporte de Membrana Mitocondrial/genética , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilación/fisiología , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Protein Sci ; 27(2): 523-530, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29124793

RESUMEN

p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)-binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the "activating" C-terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked-immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild-type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the "unfolded" conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Quinasa de la Caseína II/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Regulación Alostérica , Humanos , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Proteína p53 Supresora de Tumor/genética
5.
Klin Onkol ; 31(Suppl 2): 55-62, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31023025

RESUMEN

BACKGROUND: The heat shock transcription factor, HSF1, is the main regulator of the proteotoxic stress response that orchestrates the adaptation of cells to stress conditions such as elevated temperature, oxidative stress, and proteotoxic stress. As such, HSF1 regulates a large number of stress response-related genes, primarily those encoding heat shock proteins (HSPs). HSPs are molecular chaperones involved in the acquisition of native protein conformations and the prevention of protein degradation, and they also contribute to the removal of denatured proteins via the proteasome. Representative members of the HSP family are HSP70 and HSP90. The stress response is a highly conserved mechanism across all eukaryotes, and HSF1 has been linked to a number of physiological processes (ribosomal biogenesis, translation, transcription, cell cycle, and metabolism) and pathological disorders (neurodegenerative disorders such as Parkinson´s and Alzheimer´s diseases). HSF1 activation is also prominent in different types of cancer (prostate, breast, colorectal carcinoma etc.) where it correlates with tumor aggressiveness and poor prognosis. HSF1 is therefore considered a diagnostic and prognostic marker and is currently being targeted to develop new cancer therapies. Several inhibitors of HSF1 have already been synthesized, but their molecular mechanism (s) of action, specificity those of HSF1, nontoxicity in healthy tissues, and their efficacy in targeting tumor cells remain to be elucidated. PURPOSE: This review summarizes known mechanisms of HSF1 regulation and activation, the role of HSF1 during malignant transformation, and the potential of designing small molecule HSF1 inhibitors for cancer therapy. Key words: HSF1 transcription factor - molecular chaperones - cellular stress - tumor transformation - cancer This work was supported by the project MEYS - NPS I - LO1413. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Accepted: 10. 8. 2018.


Asunto(s)
Transformación Celular Neoplásica , Factores de Transcripción del Choque Térmico/fisiología , Factores de Transcripción del Choque Térmico/antagonistas & inhibidores , Humanos , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...