Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Chem Sci ; 13(36): 10686-10698, 2022 Sep 21.
Article En | MEDLINE | ID: mdl-36320685

In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as Mycobacterium tuberculosis, making it a rich source of drug targets for the development of novel anti-infectives. Standard computer-aided drug-design tools, frequently applied in other areas of drug development, often fail for targets with large, hydrophilic binding sites such as DXPS. Therefore, we introduce the concept of pseudo-inhibitors, combining the benefits of pseudo-ligands (defining a pharmacophore) and pseudo-receptors (defining anchor points in the binding site), for providing the basis to perform a LBVS against M. tuberculosis DXPS. Starting from a diverse set of reference ligands showing weak inhibition of the orthologue from Deinococcus radiodurans DXPS, we identified three structurally unrelated classes with promising in vitro (against M. tuberculosis DXPS) and whole-cell activity including extensively drug-resistant strains of M. tuberculosis. The hits were validated to be specific inhibitors of DXPS and to have a unique mechanism of inhibition. Furthermore, two of the hits have a balanced profile in terms of metabolic and plasma stability and display a low frequency of resistance development, making them ideal starting points for hit-to-lead optimization of antibiotics with an unprecedented mode of action.

2.
Chimia (Aarau) ; 76(12): 1019-1024, 2022 Dec 21.
Article En | MEDLINE | ID: mdl-38069797

NHA2, also known as SLC9B2, is an orphan intracellular Na+/H+ exchanger (NHE) that has been associated with arterial hypertension and diabetes mellitus in humans. The objective of this NCCR TransCure project was to define the physiological and molecular function of NHA2, to develop a high resolution kinetic transport assay for NHA2 and to identify specific and potent compounds targeting NHA2. In this review, we summarize the results of this highly interdisciplinary and interfaculty effort, led by the groups of Proffs. Jean-Louis Reymond, Christoph von Ballmoos and Daniel Fuster.

3.
Br J Pharmacol ; 175(12): 2504-2519, 2018 06.
Article En | MEDLINE | ID: mdl-29579323

BACKGROUND AND PURPOSE: TRPM4 is a calcium-activated non-selective cation channel expressed in many tissues and implicated in several diseases, and has not yet been validated as a therapeutic target due to the lack of potent and selective inhibitors. We sought to discover a novel series of small-molecule inhibitors by combining in silico methods and cell-based screening assay, with sub-micromolar potency and improved selectivity from previously reported TRPM4 inhibitors. EXPERIMENTAL APPROACH: Here, we developed a high throughput screening compatible assay to record TRPM4-mediated Na+ influx in cells using a Na+ -sensitive dye and used this assay to screen a small set of compounds selected by ligand-based virtual screening using previously known weakly active and non-selective TRPM4 inhibitors as seed molecules. Conventional electrophysiological methods were used to validate the potency and selectivity of the hit compounds in HEK293 cells overexpressing TRPM4 and in endogenously expressing prostate cancer cell line LNCaP. Chemical chaperone property of compound 5 was studied using Western blots and electrophysiology experiments. KEY RESULTS: A series of halogenated anthranilic amides were identified with TRPM4 inhibitory properties with sub-micromolar potency and adequate selectivity. We also showed for the first time that a naturally occurring variant of TRPM4, which displays loss-of-expression and function, is rescued by the most promising compound 5 identified in this study. CONCLUSIONS AND IMPLICATIONS: The discovery of compound 5, a potent and selective inhibitor of TRPM4 with an additional chemical chaperone feature, revealed new opportunities for studying the role of TRPM4 in human diseases and developing clinical drug candidates.


Amides/pharmacology , Small Molecule Libraries/pharmacology , TRPM Cation Channels/antagonists & inhibitors , Amides/chemistry , Animals , Dose-Response Relationship, Drug , Drug Discovery , HEK293 Cells , HeLa Cells , High-Throughput Screening Assays , Humans , Ligands , Mice , RAW 264.7 Cells , Small Molecule Libraries/chemistry , Structure-Activity Relationship , TRPM Cation Channels/metabolism
4.
J Food Sci ; 81(8): T2099-106, 2016 Aug.
Article En | MEDLINE | ID: mdl-27356183

Since the early 2000s, labeling of potentially allergenic food components to protect people who suffer from food allergies is compulsory in numerous industrialized countries. In Europe, milk and egg components used during the winemaking process must be indicated on the label since July 1, 2012. Several ELISA procedures have been developed to detect allergenic residues in wines. However, the complexity of the wine matrix can inhibit the immunoenzymatic reaction. The aim of this study was to implement an ELISA assay for the detection of ovalbumin in red wines using commercially available antibodies. The specificity of the acquired antibodies and the absence of cross reactivity were assessed by immunoblotting and ELISA. An ELISA assay with a LOD of 14.2 µg/L and a LOQ of 56.4 µg/L of ovalbumin in aqueous solution was obtained. Differences in ELISA signals were observed when analyzing various fining agents, although reproducible conformation of the antigen could be reached for the comparison of ovalbumin and Ovicolle. The differences between samples in terms of pH could be leveled but the inhibition of the ELISA signal, positively correlated to the tannin content of the wines, could not be suppressed. Thus, standard curves of ovalbumin in several wines were obtained by relative quantification. The control steps and the difficulties encountered presented in this study should be considered by anybody working toward the development of ELISA assays for the detection of allergenic residues in complex food matrices.


Allergens/analysis , Antibodies , Eggs , Enzyme-Linked Immunosorbent Assay/methods , Food Hypersensitivity , Ovalbumin/analysis , Wine/analysis , Animals , Cross Reactions , Europe , Food Contamination/analysis , Food Hypersensitivity/immunology , Humans , Milk/chemistry , Ovalbumin/immunology , Tannins/analysis
5.
Angew Chem Int Ed Engl ; 54(49): 14748-52, 2015 Dec 01.
Article En | MEDLINE | ID: mdl-26457814

Herein, we report the discovery of the first potent and selective inhibitor of TRPV6, a calcium channel overexpressed in breast and prostate cancer, and its use to test the effect of blocking TRPV6-mediated Ca(2+)-influx on cell growth. The inhibitor was discovered through a computational method, xLOS, a 3D-shape and pharmacophore similarity algorithm, a type of ligand-based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule, two successive rounds of LBVS followed by optimization by chemical synthesis led to a selective molecule with 0.3 µM inhibition of TRPV6. The ability of xLOS to identify different scaffolds early in LBVS was essential to success. The xLOS method may be generally useful to develop tool compounds for poorly characterized targets.


Antineoplastic Agents/pharmacology , Calcium Channel Blockers/pharmacology , Drug Evaluation, Preclinical/methods , TRPV Cation Channels/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channel Blockers/chemistry , Calcium Channels/biosynthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Ligands , Molecular Structure , Structure-Activity Relationship , TRPV Cation Channels/biosynthesis
6.
Biochem Pharmacol ; 96(3): 216-24, 2015 Aug 01.
Article En | MEDLINE | ID: mdl-26047847

Divalent metal transporter-1 (SLC11A2/DMT1) uses the H(+) electrochemical gradient as the driving force to transport divalent metal ions such as Fe(2+), Mn(2+) and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H(+)-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H(+)-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20µM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.


Drug Discovery , Iron/chemistry , Manganese/chemistry , Pyrazoles/chemistry , Pyrimidinones/chemistry , Small Molecule Libraries/chemistry , Thiourea/chemistry , Transcription Factors/antagonists & inhibitors , Biological Transport , Cations, Divalent , Databases, Pharmaceutical , Enterocytes/cytology , Enterocytes/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Hydrogen-Ion Concentration , Isomerism , Kinetics , Ligands , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , User-Computer Interface
...