Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 355(1): 51-60, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24766456

RESUMEN

In this work, we characterize the domains for the in vivo interaction between ribonuclease E (RNase E) and ribonuclease PH (RNase PH). We initially explored the interaction using pull-down assays with full wild-type proteins expressed from a chromosomal monocopy gene. Once the interaction was confirmed, we narrowed down the sites of interaction in each enzyme to an acidic 16-amino acid region in the carboxy-terminal domain of RNase E and a basic 80-amino acid region in RNase PH including an α3 helix. Our results suggest two novel functional domains of interaction between ribonucleases.


Asunto(s)
Aminoácidos/metabolismo , Endorribonucleasas/metabolismo , Exorribonucleasas/metabolismo , Mapeo de Interacción de Proteínas , Centrifugación , Escherichia coli/enzimología , Unión Proteica
2.
J Mol Biol ; 383(5): 937-44, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18805426

RESUMEN

Bacterial translation initiation factor 3 (IF3) is involved in the fidelity of translation initiation at several levels, including start-codon discrimination, mRNA translation, and initiator-tRNA selection. The IF3 C-terminal domain (CTD) is required for binding to the 30S ribosomal subunit. N-terminal domain (NTD) function is less certain, but likely contributes to initiation fidelity. Point mutations in either domain can decrease initiation fidelity, but C-terminal domain mutations may be indirect. Here, the Y75N substitution mutation in the NTD is examined in vitro and in vivo. IF3(Y75N) protein binds 30S subunits normally, but is defective in start-codon discrimination, inhibition of initiation on leaderless mRNA, and initiator-tRNA selection, thereby establishing a direct role for the IF3 NTD in these initiation processes. A model illustrating how IF3 modulates an inherent function of the 30S subunit is discussed.


Asunto(s)
Escherichia coli/metabolismo , Mutación/genética , Factor 3 Procariótico de Iniciación/química , Factor 3 Procariótico de Iniciación/genética , Biosíntesis de Proteínas , Regiones no Traducidas 5'/metabolismo , Alelos , Secuencia de Aminoácidos , Prueba de Complementación Genética , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN de Transferencia de Metionina/metabolismo , Ribosomas/metabolismo
4.
Biochimie ; 88(6): 725-35, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16483707

RESUMEN

In the present work we have used a double-hybrid assay in bacteria to identify a putative domain in E. coli PNPase required for in vivo interaction with RNase E. We used a 202 aa fragment of RNase E previously reported as the PNPase binding domain in this enzyme and a collection of 13 different fragments of 105 aa, spanning the entire sequence of 734 aa PNPase (GenBank Accession number NP_417633). Our results indicate that two clones of PNPase including residues 158-262 and residues 473-577 contain interaction sites for RNase E within a betabetaalphabetabetaalpha domain configuration. Three-dimensional modeling of the E. coli PNPase based on the S. antibioticus protein structure indicates that the putative binding domain is located on the monomer surface, facing outward from the trimeric tertiary structure. Since a copy of the betabetaalphabetabetaalpha domain is also found in RNase PH, we investigated and found an interaction with RNase E in a pull-down assay. We suggest this interaction takes place through the similar betabetaalphabetabetaalpha domain present in the tertiary structure of this enzyme. Based on these results, we propose that RNase PH and RNase E could form functional assemblies in E. coli.


Asunto(s)
Endorribonucleasas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/química , Polirribonucleótido Nucleotidiltransferasa/metabolismo , Escherichia coli , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química
5.
Mol Microbiol ; 54(5): 1409-21, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15554978

RESUMEN

Escherichia coli contains at least five ATP-dependent DEAD-box RNA helicases which may play important roles in macromolecular metabolism, especially in translation and mRNA decay. Here we demonstrate that one member of this family, CsdA, whose expression is induced by cold shock, interacts physically and functionally with RNase E. Three independent approaches show that after a shift of cultures to 15 degrees C, CsdA co-purifies with RNase E and other components of the RNA degradosome. Moreover, functional assays using reconstituted minimal degradosomes prepared from purified components in vitro show that CsdA can fully replace the resident RNA helicase of the RNA degradosome, RhlB. In addition, under these conditions, CsdA displays RNA-dependent ATPase activity. Taken together, our data are consistent with a model in which CsdA accumulates during the early stages of cold acclimatization and subsequently assembles into degradosomes with RNase E synthesized in cold-adapted cultures. These findings show that the RNA degradosome is a flexible macromolecular machine capable of adapting to altered environmental conditions.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Complejos Multienzimáticos/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Adaptación Fisiológica , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Frío , ARN Helicasas DEAD-box , Unión Proteica
6.
Nature ; 431(7007): 476-81, 2004 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-15386016

RESUMEN

Bordetella bacteriophages generate diversity in a gene that specifies host tropism. This microevolutionary adaptation is produced by a genetic element that combines the basic retroelement life cycle of transcription, reverse transcription and integration with site-directed, adenine-specific mutagenesis. Central to this process is a reverse transcriptase-mediated exchange between two repeats; one serving as a donor template (TR) and the other as a recipient of variable sequence information (VR). Here we describe the genetic basis for diversity generation. The directionality of information transfer is determined by a 21-base-pair sequence present at the 3' end of VR. On the basis of patterns of marker transfer in response to variant selective pressures, we propose that a TR reverse transcript is mutagenized, integrated into VR as a single non-coding strand, and then partially converted to the parental VR sequence. This allows the diversity-generating system to minimize variability to the subset of bases under selection. Using the Bordetella phage cassette as a signature, we have identified numerous related elements in diverse bacteria. These elements constitute a new family of retroelements with the potential to confer selective advantages to their host genomes.


Asunto(s)
Adaptación Fisiológica/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Bordetella/virología , Variación Genética/genética , Mutagénesis/genética , Retroelementos/fisiología , Bacteriófagos/enzimología , Secuencia de Bases , Evolución Biológica , Bordetella/clasificación , Biología Computacional , Genes Virales/genética , Genoma Viral , Interacciones Huésped-Parásitos , Filogenia , Polimorfismo Genético/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Selección Genética , Especificidad de la Especie , Transcripción Genética/genética
7.
J Bacteriol ; 184(22): 6389-94, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12399511

RESUMEN

The Bacillus subtilis bex gene complemented the defect in an Escherichia coli era mutant. The Bex protein showed 39 percent identity and 67 percent similarity to the E. coli Era GTPase. In contrast to era, bex was not essential in all strains. bex mutant cells were elongated and filled with diffuse nucleoid material. They grew slowly and exhibited severely impaired spore formation.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas de Escherichia coli , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Genes Esenciales , Proteínas de Unión al ARN , Homología de Secuencia , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , División Celular , Medios de Cultivo , Escherichia coli/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Eliminación de Gen , Esporas Bacterianas/fisiología
8.
Science ; 295(5562): 2091-4, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11896279

RESUMEN

Host-pathogen interactions are often driven by mechanisms that promote genetic variability. We have identified a group of temperate bacteriophages that generate diversity in a gene, designated mtd (major tropism determinant), which specifies tropism for receptor molecules on host Bordetella species. Tropism switching is the result of a template-dependent, reverse transcriptase-mediated process that introduces nucleotide substitutions at defined locations within mtd. This cassette-based mechanism is capable of providing a vast repertoire of potential ligand-receptor interactions.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Bordetella bronchiseptica/virología , Genes Virales , ADN Polimerasa Dirigida por ARN/metabolismo , Bacteriófagos/enzimología , Bacteriófagos/ultraestructura , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/metabolismo , Variación Genética , Genoma Viral , Mutación , ADN Polimerasa Dirigida por ARN/genética , Receptores Virales/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Moldes Genéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA