Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(27): 29339-29349, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39005776

RESUMEN

Transparent nanocomposite films made of surface-modified titanium dioxide nanoparticles and thermoplastic polyurethane are prepared via film casting approach showing enhanced refractive indexes and mechanical properties. Two different sets of composites were prepared up to 37.5 wt % of inorganic nanoparticles with a diameter <15 nm, one set using particles capped only with oleic acid and a second one with a bimodal system layer made of oleic acid and mPEO-5000 as coating agents. All of the composites show significantly enhanced refractive index and mechanical properties than the neat polymeric matrix. The transparency of nanocomposite films shows the excellent dispersion of the inorganic nanoparticles in the polymeric matrix avoiding aggregation and precipitation phenomena. Our study provides a facile and feasible route to produce transparent nanocomposite films with tunable mechanical properties and high refractive indices for various applications.

2.
Faraday Discuss ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044694

RESUMEN

Hydrophobic non-ionic (type V) deep eutectic solvents (DESs) have recently emerged as a new class of sustainable materials that have shown unique properties in several applications. In this study, type V DESs thymol : camphor, menthol : thymol and eutectic mixtures (EMs) based on menthol : carboxylic acids with variable chain length, are experimentally investigated using xenon NMR spectroscopy, with the aim to clarify the peculiar nanostructure of these materials. The results, obtained from the analysis of the 129Xe chemical shifts and of the longitudinal relaxation times, reveal a correlation between the deviation from ideality of the DESs and their structure free volume. Furthermore, the effect of varying the composition of DESs and EMs on the liquid structure is also studied.

3.
Nat Nanotechnol ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039121

RESUMEN

Exosomes are promising therapeutics for tissue repair and regeneration to induce and guide appropriate immune responses in dystrophic pathologies. However, manipulating exosomes to control their biodistribution and targeting them in vivo to achieve adequate therapeutic benefits still poses a major challenge. Here we overcome this limitation by developing an externally controlled delivery system for primed annexin A1 myo-exosomes (Exomyo). Effective nanocarriers are realized by immobilizing the Exomyo onto ferromagnetic nanotubes to achieve controlled delivery and localization of Exomyo to skeletal muscles by systemic injection using an external magnetic field. Quantitative muscle-level analyses revealed that macrophages dominate the uptake of Exomyo from these ferromagnetic nanotubes in vivo to synergistically promote beneficial muscle responses in a murine animal model of Duchenne muscular dystrophy. Our findings provide insights into the development of exosome-based therapies for muscle diseases and, in general, highlight the formulation of effective functional nanocarriers aimed at optimizing exosome biodistribution.

4.
Angew Chem Int Ed Engl ; 62(45): e202313232, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37814385

RESUMEN

A photocatalytic RAFT-controlled radical depolymerization method is introduced for precisely conferring temporal control under visible light irradiation. By regulating the deactivation of the depropagating chains and suppressing thermal initiation, an excellent temporal control was enabled, exemplified by several consecutive "on" and "off" cycles. Minimal, if any, depolymerization could be observed during the dark periods while the polymer chain-ends could be efficiently re-activated and continue to depropagate upon re-exposure to light. Notably, favoring deactivation resulted in the gradual unzipping of polymer chains and a stepwise decrease in molecular weight over time. This synthetic approach constitutes a simple methodology to modulate temporal control during the chemical recycling of RAFT-synthesized polymers while offering invaluable mechanistic insights.

5.
Polym Chem ; 14(3): 253-258, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36760607

RESUMEN

Retrieving the starting monomers from polymers synthesized by reversible deactivation radical polymerization has recently emerged as an efficient way to increase the recyclability of such materials and potentially enable their industrial implementation. To date, most methods have primarily focused on utilizing high temperatures (typically from 120 °C to 180 °C) to trigger an efficient depolymerization reaction. In this work, we show that, in the presence of Eosin Y under light irradiation, a much faster depolymerization of polymers made by reversible addition-fragmentation chain-transfer (RAFT) polymerization can be triggered even at a lower temperature (i.e. 100 °C). For instance, green light, in conjunction with ppm amounts of Eosin Y, resulted in the accelerated depolymerization of poly(methyl methacrylate) from 16% (thermal depolymerization at 100 °C) to 37% within 1 hour, and finally 80% depolymerization after 8 hours, as confirmed by both 1H-NMR and SEC analyses. The enhanced depolymerization rate was attributed to the activation of a macroCTA by Eosin Y, thus resulting in a faster macroradical generation. Notably, this method was found to be compatible with different wavelengths (e.g. blue, red and white light irradiation), solvents, and RAFT agents, thus highlighting the potential of light to significantly improve current depolymerization approaches.

6.
ACS Appl Polym Mater ; 4(12): 8740-8749, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36532888

RESUMEN

Molecularly imprinted polymers (MIPs) display intriguing recognition properties and can be used as sensor recognition elements or in separation. In this work, we investigated the formation of hierarchical porosity of compositionally varied MIPs using 129Xe Nuclear Magnetic Resonance (NMR) and 1H Time Domain Nuclear Magnetic Resonance (TD-NMR). Variable temperature 129Xe NMR established the morphological variation with respect to the degree of cross-linking, supported by 1H TD-NMR determination of polymer chain mobility. Together, the results indicate that a high degree of cross-linking stabilizes the porous structure: highly cross-linked samples display a significant amount of accessible mesopores that instead collapse in less structured polymers. No significant differences can be detected due to the presence of templated pores in molecularly imprinted polymers: in the dry state, these specific shapes are too small to accommodate xenon atoms, which, instead, probe higher levels in the porous structure, allowing their study in detail. Additional resonances at a high chemical shift are detected in the 129Xe NMR spectra. Even though their chemical shifts are compatible with xenon dissolved in bulk polymers, variable temperature experiments rule out this possibility. The combination of 129Xe and TD-NMR data allows attribution of these resonances to softer superficial regions probed by xenon in the NMR time scale. This can contribute to the understanding of the surface dynamics of polymers.

7.
Nano Lett ; 22(21): 8509-8518, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36315593

RESUMEN

Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).

8.
Materials (Basel) ; 15(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234079

RESUMEN

The synthesis of hydrogels that are based on poly-hydroxyethyl methacrylate, p(HEMA), network semi-interpenetrated with linear polyvinylpyrrolidone (PVP) was optimized in order to allow both a fast preparation and a high cleaning effectiveness of artistic surfaces. For this purpose, the synthesis parameters of the gel with PVP having a high molecular weight (1300 kDa) that were reported in the literature, were modified in terms of temperature, time, and crosslinker amount. In addition, the gel composition was modified by using PVP with different molecular weights, by changing the initiator and by adding maleic anhydride. The modified gels were characterized in terms of equilibrium water content (EWC), water uptake, conversion grade, and thermal properties by differential scanning calorimetry (DSC). The cleaning effectiveness of the gels was studied through the removal of copper salts from laboratory-stained specimens. Cleaning materials were characterized by electron paramagnetic resonance (EPR) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and inductively-coupled plasma-mass spectrometry (ICP-MS). Cleaning was assessed on marble specimens by color variation measurements. The gel synthesis is accelerated by using PVP 360 kDa. The addition of maleic anhydride in the p(HEMA)/PVP network allows the most effective removal of copper salt deposits from marble since it acts as a chelator towards copper ions.

9.
ACS Appl Mater Interfaces ; 13(32): 38688-38699, 2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34346668

RESUMEN

The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.


Asunto(s)
Embalaje de Alimentos/métodos , Persea , Semillas/metabolismo , Antioxidantes/química , Pectinas/química , Persea/química , Persea/metabolismo
10.
Chemphyschem ; 22(18): 1880-1890, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34251740

RESUMEN

The dynamics of xenon gas, loaded in a series of 1-alkyl-3-methylimidazolium based ionic liquids, probes the formation of increasingly blurred polar/apolar nanodomains as a function of the anion type and the cation chain length. Exploiting 129 Xe NMR spectroscopy techniques, like Pulse Gradient Spin Echo (PGSE) and inversion recovery (IR), the diffusion motion and relaxation times are determined for 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [Cn C1 im][TFSI]. A correlation between the ILs nano-structure and both xenon diffusivity and relaxation times, as well as chemical shifts, is outlined. Interestingly, comparison with previous results of the same properties in the homologous imidazolium chlorides and hexafluorophospate shows an opposite trend with the alkyl chain length. Classical molecular dynamics (MD) simulations are used to calculate the xenon and cation and anion diffusion coefficients in the same systems, including imidazolium cations with longer chains (n=4, 6, 8 … 20). An almost quantitative agreement with the experiments validates the MD simulations and, at the same time, provides the necessary structural and dynamic microscopic insights on the nano-segregation and diffusion of xenon in bistriflimide, chloride and hexafluorphosphate salts allowing to observe and rationalize the shaping effect of the cation in the nanostructure.

11.
Polymers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915928

RESUMEN

Photochemistry has attracted great interest in the last decades in the field of polymer and material science for the synthesis of innovative materials. The merging of photochemistry and reversible-deactivation radical polymerizations (RDRP) provides good reaction control and can simplify elaborate reaction protocols. These advantages open the doors to multidisciplinary fields going from composite materials to bio-applications. Photoinduced Electron/Energy Transfer Reversible Addition-Fragmentation Chain-Transfer (PET-RAFT) polymerization, proposed for the first time in 2014, presents significant advantages compared to other photochemical techniques in terms of applicability, cost, and sustainability. This review has the aim of providing to the readers the basic knowledge of PET-RAFT polymerization and explores the new possibilities that this innovative technique offers in terms of industrial applications, new materials production, and green conditions.

12.
Phys Chem Chem Phys ; 23(2): 1139-1145, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33347524

RESUMEN

Water-in-salt solutions, i.e. solutions in which the amount of salt by volume or weight is larger than that of the solvent, are attracting increasing attention in electrochemistry due to their distinct features that often include decomposition potentials much higher than those of lower concentration solutions. Despite the high solubility of potassium acetate (KAC) in water at room temperature (up to 25 moles of salt per kg of solvent), the low cost, and the large availability, the use of highly concentrated KAC solutions is still limited to a few examples in energy storage applications and a systematic study of their physical-chemical properties is lacking. To fill this gap, we have investigated the thermal, rheological, electrical, electrochemical, and spectroscopic features of KAC/water solutions in the compositional range between 1 and 25 mol kg-1. We show the presence of a transition between the "salt-in-solvent" and "solvent-in-salt" regimes in the range of 10-15 mol kg-1. Among the explored compositions, the highest concentrations (20 and 25 mol kg-1) exhibit good room temperature conductivity values (55.6 and 31 mS cm-1, respectively) and a large electrochemical potential window (above 2.5 V).

13.
Membranes (Basel) ; 10(9)2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967339

RESUMEN

Membrane modification is becoming ever more relevant for mitigating fouling phenomena within wastewater treatment applications. Past research included a novel low-fouling coating using polymerizable bicontinuous microemulsion (PBM) induced by UV-LED polymerization. This additional cover layer deteriorated the filtration capacity significantly, potentially due to the observed high pore intrusion of the liquid PBM prior to the casting process. Therefore, this work addressed an innovative experimental protocol for controlling the viscosity of polymerizable bicontinuous microemulsions (PBM) before casting on commercial ultrafiltration (UF) membranes. Prior to the coating procedure, the PBM viscosity modulation was carried out by controlled radical polymerization (CRP). The regulation was conducted by introducing the radical inhibitor 2,2,6,6-tetramethylpiperidine 1-oxyl after a certain time (CRP time). The ensuing controlled radical polymerized PBM (CRP-PBM) showed a higher viscosity than the original unpolymerized PBM, as confirmed by rheological measurements. Nevertheless, the resulting CRP-PBM-cast membranes had a lower permeability in water filtration experiments despite a higher viscosity and potentially lower pore intrusion. This result is due to different polymeric structures of the differently polymerized PBM, as confirmed by solid-state nuclear magnetic resonance (NMR) investigations. The findings can be useful for future developments in the membrane science field for production of specific membrane-coating layers for diverse applications.

14.
J Phys Chem B ; 124(30): 6617-6627, 2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32613834

RESUMEN

The translational dynamics of xenon gas dissolved in room-temperature ionic liquids (RTILs) is revealed by 129Xe NMR and molecular dynamics (MD) simulations. The dynamic behavior of xenon gas loaded in 1-alkyl-3-methylimidazolium chloride, [CnC1im]Cl (n = 6, 8, 10), and hexafluorophosphate, [CnC1im][PF6] (n = 4, 6, 8, 10) has been determined by measuring the 129Xe diffusion coefficients and NMR relaxation times. The analysis of the experimental NMR data demonstrates that, in these representative classes of ionic liquids, xenon motion is influenced by the length of the cation alkyl chain and anion type. 129Xe spin-lattice relaxation times are well described with a monoexponential function, indicating that xenon gas in ILs effectively experiences a single average environment. These experimental results can be rationalized based on the analysis of classical MD trajectories. The mechanism described here can be particularly useful in understanding the separation and adsorption properties of RTILs.

15.
Chem Mater ; 31(18): 7531-7546, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875864

RESUMEN

PEGylation of metal oxide nanoparticles is the common approach to improve their biocompatibility and in vivo circulation time. In this work, we present a combined experimental and theoretical study to determine the operating condition that guarantee very high grafting densities, which are desirable in any biomedical application. Moreover, we present an insightful conformational analysis spanning different coverage regimes and increasing polymer chain lengths. Based on 13C NMR measurements and molecular dynamics simulations, we show that classical and popular models of polymer conformation on surfaces fail in determining the mushroom-to-brush transition point and prove that it actually takes place only at rather high grafting density values.

16.
Phys Chem Chem Phys ; 21(11): 5999-6010, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30809621

RESUMEN

Ionic liquid (IL) mixtures enable the design of fluids with finely tuned structural and physicochemical properties for myriad applications. In order to rationally develop and design IL mixtures with the desired properties, a thorough understanding of the structural origins of their physicochemical properties and the thermodynamics of mixing needs to be developed. To elucidate the structural origins of the excess molar volume within IL mixtures containing ions with different alkyl chain lengths, 3 IL mixtures containing 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ILs have been explored in a joint small angle X-ray scattering (SAXS) and 129Xe NMR study. The apolar domains of the IL mixtures were shown to possess similar dimensions to the largest alkyl chain of the mixture with the size evolution determined by whether the shorter alkyl chain was able to interact with the apolar domain. 129Xe NMR results illustrated that the origin of excess molar volume in these mixtures was due to fluctuations within these apolar domains arising from alkyl chain mismatch, with the formation of a greater number of smaller voids within the IL structure. These results indicate that free volume effects for these types of mixtures can be predicted from simple considerations of IL structure and that the structural basis for the formation of excess molar volume in these mixtures is substantially different to IL mixtures formed of different types of ions.

17.
R Soc Open Sci ; 5(7): 172399, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30109060

RESUMEN

Carminic acid, a natural hydrophilic dye extensively used in the food and cosmetic industries, is converted in hydrophobic dyes by acetylation or pivaloylation. These derivatives are successfully used as biocolourants for rubber objects. In this paper, spectroscopic properties of the carminic acid derivatives in dimethyl sulfoxide and in polybutylacrylate are studied by means of photoluminescence and time-resolved photoluminescence decays, revealing a hypsochromic effect due to the presence of bulky substituents as the acetyl or pivaloyl groups. Molecular mechanics and density functional theory calculations confirm the disruption of planarity between the sugar ring and the anthraquinoid system determined by the esterification.

18.
Langmuir ; 34(32): 9460-9469, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30016593

RESUMEN

Nanocrystals (NCs) surface characterization is a fundamental step for understanding the physical and chemical phenomena involved at the nanoscale. Surface energy and chemistry depend on particle size and composition, and, in turn, determine the interaction of NCs with the surrounding environment, their properties and stability, and the feasibility of nanocomposites. This work aims at extracting more information on the surface of different titanium dioxide polymorphs using 1H-TD-NMR of water. Taking advantage of the interaction between water molecules and titanium dioxide NCs, it is possible to correlate the proton transverse relaxation times ( T2) as the function of the concentration and the specific surface area (δp· Cm) and use it as an indicator of the crystal phase. Examples of three different crystals phase, rutile, anatase, and brookite, have been finely characterized and their behavior in water solution have been studied with TD-NMR. The results show a linear correlation between relaxivity ( R2) and their concentration Cm. The resulting slopes, after normalization for the specific surface, represent the surface/water interaction and range from 1.28 g m-2 s-1 of 50 nm rutile nanocrystals to 0.52 for similar sized brookite. Even higher slopes (1.85) characterize smaller rutile NCs, in qualitative accordance with the trends of surface energy. Thanks to proton relaxation phenomena that occur at the NCs surface, it is possible to differentiate the crystal phase and the specific surface area of titanium dioxide polymorphs in water solution.

19.
Polymers (Basel) ; 10(6)2018 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30966689

RESUMEN

Subtle alterations in the mid-block of polystyrene-b-poly (ethylene-co-butylene)-b-polystyrene (SEBS) have a significant impact on the mechanical properties of the resulting microphase separated materials. In samples with high butylene content, the ethylene-co-butylene (EB) phase behaves as a rubber, as seen by differential scanning calorimetry (DSC), time domain (TD) and Magic Angle Spinning (MAS) NMR, X-ray scattering at small (SAXS), and wide (WAXS) angles. In samples where the butylene content is lower-but still sufficient to prevent crystallization in bulk EB-the DSC thermogram presents a broad endothermic transition upon heating from 221 to 300 K. TD NMR, supported by WAXS and dielectric spectroscopy measurements, probed the dynamic phenomena of EB during this transition. The results suggest the existence of a rotator phase for the EB block below room temperature, as a result of nanoconfinement.

20.
ACS Appl Mater Interfaces ; 9(46): 40180-40186, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29083152

RESUMEN

Upconversion is a photon-management process especially suited to water-splitting cells that exploit wide-bandgap photocatalysts. Currently, such catalysts cannot utilize 95% of the available solar photons. We demonstrate here that the energy-conversion yield for a standard photocatalytic water-splitting device can be enhanced under solar irradiance by using a low-power upconversion system that recovers part of the unutilized incident sub-bandgap photons. The upconverter is based on a sensitized triplet-triplet annihilation mechanism (sTTA-UC) obtained in a dye-doped elastomer and boosted by a fluorescent nanocrystal/polymer composite that allows for broadband light harvesting. The complementary and tailored optical properties of these materials enable efficient upconversion at subsolar irradiance, allowing the realization of the first prototype water-splitting cell assisted by solid-state upconversion. In our proof-of concept device the increase of the performance is 3.5%, which grows to 6.3% if concentrated sunlight (10 sun) is used. Our experiments show how the sTTA-UC materials can be successfully implemented in technologically relevant devices while matching the strict requirements of clean-energy production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA