Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Phys Chem Chem Phys ; 20(34): 22331-22341, 2018 Aug 29.
Article En | MEDLINE | ID: mdl-30124697

The photophysics of 9(19),16(17),23(24)-tri-tert-butyl-2-[ethynyl-(4-carboxymethyl)phenyl]phthalocyaninatozinc(ii) and its H-aggregates is studied in different solvents by means of ultrafast non-linear optical spectroscopy and computational modeling. In non-coordinating solvents, both stationary and time-resolved spectroscopies highlight the formation of extended molecular aggregates, whose dimension and spectral properties depends on the concentration. In all the explored experimental conditions, time-resolved transient absorption experiments show multi exponential decay of the signals. Additional insights into the excited state relaxation mechanisms of the system is obtained with 2D electronic spectroscopy, which is employed to compare the deactivation channels in the absence or presence of aggregates. In ethanol and diethylether, where only monomers are present, an ultrafast relaxation process among the two non-degenerate Q-states of the molecule is evidenced by the appearance of a cross peak in the 2D-maps. In chloroform or CCl4, where disordered H-aggregates are formed, an energy transfer channel among aggregates with different composition and size is observed, leading to the non-radiative decay towards the lower energy dark state of the aggregates. Efficient coupling between less and more aggregated species is highlighted in two-dimensional electronic spectra by the appearance of a cross peak. The kinetics and intensity of the latter depend on the concentration of the solution. Finally, the linear spectroscopic properties of the aggregate are reproduced using a simplified structural model of an extended aggregate, based on Frenkel Hamiltonian Calculations and on an estimate of the electronic couplings between each dimer composing the aggregate computed at DFT level.

2.
ACS Nano ; 12(5): 4556-4564, 2018 05 22.
Article En | MEDLINE | ID: mdl-29701947

Photosynthetic antennae and organic electronic materials use topological, structural, and molecular control of delocalized excitons to enhance and direct energy transfer. Interactions between the transition dipoles of individual chromophore units allow for coherent delocalization across multiple molecular sites. This delocalization, for specific geometries, greatly enhances the transition dipole moment of the lowest energy excitonic state relative to the chromophore and increases its radiative rate, a phenomenon known as superradiance. In this study, we show that ordered, self-assembled light-harvesting nanotubes (LHNs) display excitation-induced photobrightening and photodarkening. These changes in quantum yield arise due to changes in energetic disorder, which in turn increases/decreases excitonic superradiance. Through a combination of experiment and modeling, we show that intense illumination induces different types of chemical change in LHNs that reproducibly alter absorption and fluorescence properties, indicating control over excitonic delocalization. We also show that changes in spectral width and shift can be sensitive measures of system dimensionality, illustrating the mixed 1-2D nature of LHN excitons. Our results demonstrate a path forward for mastery of energetic disorder in an excitonic antenna, with implications for fundamental studies of coherent energy transport.

3.
Nano Lett ; 17(11): 6838-6846, 2017 11 08.
Article En | MEDLINE | ID: mdl-29039964

Cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) have recently become a promising material for optoelectronic applications due to their high emission quantum yields and facile band gap tunability via both halide composition and size. The spectroscopy of single PNCs enhances our understanding of the effect of confinement on excitations in PNCs in the absence of obfuscating ensemble averaging and can also inform synthetic efforts. However, single PNC studies have been hampered by poor PNC photostability under confocal excitation, precluding interrogation of all but the most stable PNCs, and leading to a lack of understanding of PNCs in the regime of high confinement. Here, we report the first comprehensive spectroscopic investigation of single PNC properties using solution-phase photon-correlation methods, including both highly confined and blue-emitting PNCs, previously inaccessible to single NC techniques. With minimally perturbative solution-phase photon-correlation Fourier spectroscopy (s-PCFS), we establish that the ensemble emission linewidth of PNCs of all sizes and compositions is predominantly determined by the intrinsic single PNC linewidth (homogeneous broadening). The single PNC linewidth, in turn, dramatically increases with increasing confinement, consistent with what has been found for II-VI semiconductor nanocrystals. With solution-phase photon antibunching measurements, we survey the biexciton-to-exciton quantum yield ratio (BX/X QY) in the absence of user-selection bias or photodegradation. Remarkably, the BX/X QY ratio depends both on the PNC size and halide composition, with values between ∼2% for highly confined bromide PNCs and ∼50% for intermediately confined iodide PNCs. Our results suggest a wide range of underlying Auger rates, likely due to transitory charge carrier separation in PNCs with relaxed confinement.

4.
Nano Lett ; 16(11): 6808-6815, 2016 11 09.
Article En | MEDLINE | ID: mdl-27689389

We report 1.6 ± 1 µm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton-exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm2/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm2/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

...